Расчет зоны поражения. Расчет размеров взрывоопасных зон избыточного давления взрыва Описание аварий взрыв резервуар радиус зон

Долевая собственность

7.3. РАСЧЕТ ХАРАКТЕРИСТИК ВЗРЫВА

Основным поражающим действием взрывчатых веществ является ударная волна. Поэтому для определения поражающего действия взрывчатого вещества необходимо рассчитать избыточное давление взрыва

, (7.15)

где р – давление на фронте ударной волны;

р 0 – давление невозмущенного воздуха – атмосферное давление (101кПа).

Величина D р зависит от типа взрывчатого вещества, массы взорванного заряда, расстояния от центра взрыва и характера подстилающей поверхности.

Расчет величины избыточного давления D р проводится в два этапа. На первом этапе находится приведенный радиус зоны взрыва по формуле

, (7.16)

где R – расстояние от центра взрыва, м;

М – масса заряда, кг;

К – коэффициент, учитывающий характер подстилающей поверхности;

Т Э – тротиловый эквивалент взрывчатого вещества.

В табл. 7.6 приведены значения коэффициента К для разных типов подстилающих материалов.

Таблица 7.6

Значения коэффициента К для разных материалов

Материал подстилающей поверхности

Коэффициент К

Металл

1.00

Бетон

0.95

Дерево

0.80

Грунт

0.60

Тротиловый эквивалент, как было показано выше, – это отношение массы взрывчатого вещества к массе тротила, создающей одинаковое поражающей действие. При Т Э < 1 взрывчатое вещество обладает более сильным разрушающим действием, чем тротил (на один килограмм взрывчатого вещества); при Т Э = 1 взрывчатое вещество имеет такую же разрушающую силу, как и тротил; при Т Э > 1 взрывчатое вещество будет производить меньшее разрушающее воздействие, чем тротил. В табл. 7.3 были приведены значения тротилового эквивалента для промышленных взрывчатых веществ. В табл. 7.7 приведены значения тротилового эквивалента для некоторых боевых взрывчатых веществ.

Таблица 7.7

Значение тротилового эквивалента

для боевых взрывчатых веществ

Взрывчатое вещество

Т Э

Порох

0.66

Аммонал

0.99

Тротил

1.00

Тетрил

1.15

Гексоген

1.30

ТЭН

1.39

Тритонал

1.53

На втором этапе по рассчитанному значению приведенного радиуса (7.16) рассчитывается величина избыточного давления D р . При этом зависимости от величины используются разные формулы. Для значений 6.2 расчет избыточного давления взрыва проводится по формуле:

, кПа. (7.17)

Для значений > 6.2 расчетная формула для избыточного давления взрыва имеет вид:

, кПа. (7.18)

Используя рассчитанные значения избыточного давления взрыва , можно провести оценку степени разрушения, производимого взрывом. При оценке поражающего действия взрывчатого вещества выделяют четыре зоны разрушения объектов, характеристики которых приведены в табл. 7.8.

Таблица 7.8

Зоны разрушения объектов

при разных значениях избыточного давления взрыва

Зона разрушения

D р , кПа

Полное разрушение

Более 50

Сильные разрушения

30 ÷ 50

Средние разрушения

20 ÷ 30

Слабые разрушения

10 ÷ 20

Для оценки степени разрушения зданий и сооружений при конкретном взрыве можно использовать табл. 7.9, в которой представлены предельные значения избыточного давления взрыва D р , вызывающие различные степени разрушения.

Таблица 7.9

Значения предельного избыточного давления,

вызывающие различные разрушения зданий и сооружений

D р , кПа

Разрушение

D р , кПа

Разрушение

D р , кПа

Разрушение

0.5÷3.0

Частичное разрушение остекления

Разрушение перегородок, оконных рам

Разрушение кирпичных и блочных стен

3÷7

Полное разрушение остекления

Разрушение перекрытий

Разрушение железобетонных конструкций

Рассмотрим порядок расчета избыточного давления взрыва на следующем примере.

Требуется определить поражающее действие при взрыве заряда тротила массой 100 кг на расстоянии от здания R = 2 м на открытом грунте.

Вначале определим избыточное давление взрыва D р при взрыве тротила по формуле (7.16). Коэффициент К для открытого грунта находим по табл. 7.6. Он составляет 0.60. Тротиловый эквивалент для тротила Т Э = 1 (табл. 7.7).

При аварии в резервуарном парке количество газа q(t) или пара берётся: 30% от объёма наибольшего резервуара с бензином, 20% - с нефтью. При аварии на трубопроводе - до 20% вытекшей нефти и до 50% вышедшего газа. При аварии на автотранспорте - 4т бензина. При аварии на железной дороге - 10т бензина, 7т нефти. Величина дрейфа газа воздушного облака принимается равной 300 м в сторону предприятия.

При взрыве пара и газа воздушной смеси выделяют зону детонационной волны с радиусом R1 и зону ударной волны. Определяется также: радиус зоны смертельного поражения людей (R см); радиус безопасного удаления (R бу), где R ф=5 кПа; радиус предельно допустимой взрывобезопасной концентрации пара, газа Кпдвк.

Давление во фронте ударной волны Рф2 в зоне ударной волны определяют по таблице/19/

Избыточное давление в зоне детонационной волны определяется:

Радиус зоны смертельного поражения людей определяется по формуле:

где Q - количество газа, газа в тоннах;

R1 - радиус зоны детонационной волны;

R CM - радиус смертельного поражения людей.

Расчёт взрыва резервуара вертикального стального ёмкостью 5000 м3 с нефтью

Определяем количество газа, выделившегося при взрыве:

Количество нефти в тоннах:

5000?875 = 4375000 кг. = 4375 т.

Тогда количество газа:

0,2 ? 4375 = 875 т.

По формуле определяем радиус зоны детонационной волны:

R1=18,5 ?(875)1/3 = 173,00 м.

По формуле определяем радиус зоны смертельного поражения:

RCM=30 ? (875)1/3 = 280,53м.

Расстояние от центра взрыва до операторной r2= 200 м., то r2/R1=200/173 = 1,16, тогда избыточное давление от центра взрыва до операторной Рф1 = 279 кПа

Введение

химический чрезвычайный пожар взрыв

Индустриализация современного общества, усложнение технологических процессов производства неизбежно ведут к появлению негативных явлений, связанных с возникновением чрезвычайных ситуаций. Продолжают наносить огромный ущерб, опасные природные явления и стихийные бедствия метеорологического, гидрологического и геофизического происхождения. Разрушение зданий, сооружений, промышленных объектов гибель людей и материальных ценностей имеют место не только во время войны, но и в мирное время в результате стихийных бедствий, производственных аварий и катастроф.

В связи с этим, важное социальное и экономическое значение имеет работа, направленная на провидение мероприятий по прогнозированию предупреждению чрезвычайных ситуаций. Знание руководителями и специалистами ОНХ, личным составом НВФ и всем населением основных характеристик стихийных бедствий, аварий, катастроф, современных средств нападения и их поражающих факторов, умение организовать защиту людей, продовольствия, водоисточников и техники считается важнейшим и необходимым условием деятельности каждого из них в современных условиях, гарантией высокой готовности объекта народного хозяйства к действиям в экстремальной ситуации.

Федеральный закон о защите населения и территорий от черезвычайных ситуаций природного и техногенного характера определяет общие для Российской Федерации организационно-правовые нормы в области защиты граждан Российской Федерации, иностранных граждан и лиц без гражданства, находящихся на территории Российской Федерации (далее - население), всего земельного, водного, воздушного пространства в пределах Российской Федерации или его части, объектов производственного и социального назначения, а также окружающей среды (далее - территории) от чрезвычайных ситуаций природного и техногенного характера (далее - чрезвычайные ситуации).

Действие настоящего Федерального закона распространяется на отношения, возникающие в процессе деятельности органов государственной власти Российской Федерации, органов государственной власти субъектов Российской Федерации, органов местного самоуправления, а также предприятий, учреждений и организаций независимо от их организационно-правовой формы (далее - организации) и населения в области защиты населения и территорий от чрезвычайных ситуаций.


1. Основные понятия


Чрезвычайная ситуация - это обстановка на определенной территории, сложившаяся в результате аварии, опасного природного явления, катастрофы, стихийного или иного бедствия, которые могут повлечь или повлекли за собой человеческие жертвы, ущерб здоровью людей или окружающей среде, значительные материальные потери и нарушение условий жизнедеятельности людей. (в ред. Федерального закона от 30.12.2008 №309-ФЗ)

Предупреждение чрезвычайных ситуаций - это комплекс мероприятий, проводимых заблаговременно и направленных на максимально возможное уменьшение риска возникновения чрезвычайных ситуаций, а также на сохранение здоровья людей, снижение размеров ущерба окружающей среде и материальных потерь в случае их возникновения. (в ред. Федерального закона от 30.12.2008 №309-ФЗ)

Ликвидация чрезвычайных ситуаций - это аварийно-спасательные и другие неотложные работы, проводимые при возникновении чрезвычайных ситуаций и направленные на спасение жизни и сохранение здоровья людей, снижение размеров ущерба окружающей среде и материальных потерь, а также на локализацию зон чрезвычайных ситуаций, прекращение действия характерных для них опасных факторов. (в ред. Федерального закона от 30.12.2008 №309-ФЗ)

Зона чрезвычайной ситуации - это территория, на которой сложилась чрезвычайная ситуация.

Статья 4. Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций

(в ред. Федерального закона от 04.12.2006 №206-ФЗ)

Единая государственная система предупреждения и ликвидации чрезвычайных ситуаций объединяет органы управления, силы и средства федеральных органов исполнительной власти, органов исполнительной власти субъектов Российской Федерации, органов местного самоуправления, организаций, в полномочия которых входит решение вопросов по защите населения и территорий от чрезвычайных ситуаций, в том числе по обеспечению безопасности людей на водных объектах. (в ред. Федерального закона от 19.05.2010 №91-ФЗ)

Основными задачами единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций являются, в том числе по обеспечению безопасности людей на водных объектах: (в ред. Федерального закона от 19.05.2010 №91-ФЗ)

разработка и реализация правовых и экономических норм по обеспечению защиты населения и территорий от чрезвычайных ситуаций;

осуществление целевых и научно-технических программ, направленных на предупреждение чрезвычайных ситуаций и повышение устойчивости функционирования организаций, а также объектов социального назначения в чрезвычайных ситуациях;

обеспечение готовности к действиям органов управления, сил и средств, предназначенных и выделяемых для предупреждения и ликвидации чрезвычайных ситуаций;

сбор, обработка, обмен и выдача информации в области защиты населения и территорий от чрезвычайных ситуаций, в том числе организация разъяснительной и профилактической работы среди населения в целях предупреждения возникновения чрезвычайных ситуаций на водных объектах; (в ред. Федерального закона от 19.05.2010 №91-ФЗ)

подготовка населения к действиям в чрезвычайных ситуациях;

организация оповещения населения о чрезвычайных ситуациях и информирования населения о чрезвычайных ситуациях, в том числе экстренного оповещения населения; (в ред. Федерального закона от 02.07.2013 №158-ФЗ)

прогнозирование и оценка социально-экономических последствий чрезвычайных ситуаций;

создание резервов финансовых и материальных ресурсов для ликвидации чрезвычайных ситуаций;

осуществление государственной экспертизы, государственного надзора в области защиты населения и территорий от чрезвычайных ситуаций; (в ред. Федерального закона от 14.10.2014 №307-ФЗ)

ликвидация чрезвычайных ситуаций;

осуществление мероприятий по социальной защите населения, пострадавшего от чрезвычайных ситуаций, проведение гуманитарных акций;

реализация прав и обязанностей населения в области защиты от чрезвычайных ситуаций, а также лиц, непосредственно участвующих в их ликвидации, в том числе обеспечения безопасности людей на водных объектах; (в ред. Федерального закона от 19.05.2010 №91-ФЗ)

международное сотрудничество в области защиты населения и территорий от чрезвычайных ситуаций.

Принципы построения, состав сил и средств, порядок выполнения задач и взаимодействия основных элементов, а также иные вопросы функционирования единой государственной системы предупреждения и ликвидации чрезвычайных ситуаций определяются законодательством Российской Федерации, постановлениями и распоряжениями Правительства Российской Федерации.


2. Расчет зоны ЧС


.1 Оценка химической обстановки при ЧС


Задание

На химическом предприятии произошла авария на технологическом трубопроводе с жидким хлором, находящимся под давлением. Количество вытекшей из трубопровода жидкости не установлено. Известно, что в технологической системе содержалось 59 т сжиженного хлора. Требуется определить глубину зоны возможного заражения хлором при времени от начала аварии 1 ч и продолжительность действия источника заражения (время испарения хлора). Метеоусловия на момент аварии: скорость ветра 3 м/с, температура воздуха 0°С, инверсия. Разлив АХОВ на подстилающей поверхности - свободный.

Методика оценки

1. Эквивалентное количество АХОВ, перешедшее в первичное облако, по формуле



Где -эквивалентное количество АХОВ в первичном облаке, Т; -количество выброшенного (разлившегося) при аварии АХОВ, т; -коэффициент, та висящий от условий хранении АХОВ (); -коэффициент, равный отношению пороговой токеодоэм хлора к пороговой токсодоэе АХОВ (); - коэффициент, учитывающий степень вертикальной устойчивости воздуха и равный: 1-для инверсии; - коэффициент, учитывающий влияние температуры воздуха на скорость образования первичного облака ().


.Эквивалентное количество АХОВ, перешедшее во вторичное облако, по формуле



где - количество АХОВ во вторичном облаке, т; - коэффициент, зависящий от физико-химических свойств АХОВ (; - коэффициент, учитывающий скорость ветра (=1,67); - коэффициент, зависящий от времени, прошедшего после начала аварии N (N?T),


где Т - продолжительность поражающего действия АХОВ (время испарения АХОВ с площади разлива), ч, определяется из уравнения:


Так как Т<1 часа, принимаем для 1 часа, т.е.

коэффициент, учитывающий влияние температуры окружающего воздуха па скоростьобразования вторичного облака.


3. Глубина распространения первичного () и вторичного () облаков АХОВ. =6,07 км;=21,514 км

Общая глубина распространения зараженного воздуха вычисляется по формуле


где - общая глубина распространения облака зараженного АХОВ воздуха, км; - большее из двух значенийи, км; - меньшее из двух значений и, км.


4. Общую глубину распространения облака зараженного воздуха сравнивают с возможным предельным значением глубины переноса воздушных масс (), определяемой из уравнения


где V - скорость переноса переднего фронта облака зараженного воздуха (); N - время от начала аварии, ч.

Из двух значений выбирают наименьшее, соблюдая условие



где Г - глубина зоны возможного заражения АХОВ, км.


Площадь зоны возможного заражения АХОВ ()



где - угловые размеры зоны возможного заражения АХОВ, град.


Площадь зоны фактического заражения АХОВ ()



Где-коэффициент, который зависит от степени вертикальной устойчивости воздуха и принимается равным: 0,081 - для инверсии.


Время подхода облака зараженного воздуха к заданному объекту:


Прогнозирование масштабов заражения АХОВ

В результате аварии в зону возможного заражения АХОВ (100,45) попадают населенные пункты Вишневка, Грабово, Заречье; АЗС; участок реки Белая; лесополоса.


.2 Воздействие на организм человека хлора


Хлор - газ желто-зеленого цвета, с резким запахом (запах хлорной извести), в 2,5 раза тяжелее воздуха, поэтому при утечках хлор прежде всего заполняет овраги, подвалы, первые этажи зданий, стелется по полу. Газообразный хлор и химические соединения, содержащие хлор в активной форме, опасны для здоровья человека (токсичны).

При вдыхании этого газа возможно острое и хроническое отравления. Клинические формы зависят от концентрации хлора в воздухе и продолжительности экспозиции. Различают четыре формы острого отравления хлором: молниеносная, тяжелая, средней тяжести и легкая.

Для всех этих форм типична резкая первичная реакция на воздействие газа. Неспецифическое раздражение хлором рецепторов слизистой оболочки дыхательных путей вызывает рефлекторные защитные симптомы (кашель, першение в горле, слезотечение и др.). В результате взаимодействия хлора с влагой слизистой оболочки дыхательных путей образуется соляная кислота и активный кислород, которые и оказывают токсическое действие на организм.

При высоких концентрациях хлора пострадавший может погибнуть через несколько минут (молниеносная форма): возникает стойкий ларингоспазм (сужение голосовой щели, ведущее к остановке дыхания), потеря сознания, судороги, цианоз, вздутие вен на лице и шее, непроизвольное мочеиспускание и дефекация.

При тяжелой форме отравления возникает кратковременная остановка дыхания, затем дыхание восстанавливается, но уже не нормальное, а поверхностное, судорожное. Человек теряет сознание. Смерть наступает в течение 5-25 минут.

При отравлении хлором средней тяжести сознание у пострадавших сохраняется; рефлекторная остановка дыхания непродолжительна, но в течение первых двух часов могут повторяться приступы удушья. Отмечается жжение и резь в глазах, слезотечение, боль за грудиной, приступы мучительного сухого кашля, а через 2-4 часа развивается токсический отек легких. При легкой форме острого отравления хлором выражены только признаки раздражения верхних дыхательных путей, которые сохраняются в течение нескольких суток.

Отдаленные последствия перенесенного острого отравления хлором проявляются как хронический фарингит, ларингит, трахеит, трахеобронхит, пневмосклероз, эмфизема легких, бронхо-эктатическая болезнь, легочно-сердечная недостаточность. Такие же изменения в организме возникают при длительном пребывании в условиях, когда в воздухе постоянно содержится газообразный хлор в малых концентрациях (хроническое отравление хлором). Воздействие на незащищенную кожу хлорсодержащих соединений вызывает хлорные угри, дерматит, пиодермию.

Первая помощь пострадавшим включает в себя:

промывание глаз, носа, рта 2% раствором питьевой соды;

закапывание в глаза вазелинового или оливкового масла, а при болях в глазах - по 2-3 капли 0,5% раствора дикаина;

наложение глазной мази для профилактики инфекции (0,5% синтомициновая, 10% сульфациловая) или по 2-3 капли 30% альбуцида, 0,1% раствора сульфата цинка и 1% раствора борной кислоты - 2 раза в день;

введение гидрокортизона 125 мг в/м, преднизолона 60 мг в/в или в/м.

Необходимо как можно более раннее лечение и госпитализация пострадавших.


3. Расчет зоны ЧС


.1 Расчет зон ЧС при взрыве топливно-воздушных смесей (ТВС)


Задание

На территории ОЭ хранится бензин массой М =55 т Хранениегрупповое. Удельная теплота сгорания бензина =1800. Сделать расчет возможных последствий аварии.

По результатам выполненного расчета на генеральный план предприятия (прил. 9) в масштабе наносим зоны разрушений при взрыве ТВС с указанием радиусов этих зон и величины избыточного давления в этих зонах.

Методика расчета

Характерными особенностями взрывов ТВС являются: I возникновение разных типов взрывов: детонационного, дефлаграционного или комбинированного;

при взрывах образуется 5 зон поражения: бризантная (детонационная), действия продуктов взрыва (огненного шара), действия ударной волны, теплового поражения и токсического задымления;

зависимость мощности взрыва от параметров среды, в которой происходит взрыв (температура, скорость ветра, плотность застройки, рельеф местности);

для реализации комбинированного или детонационного взрыва для ТВС обязательным условием является создание концентрации продукта в воздухе в пределах нижнего и верхнего концентрационного предела.

Дефлаграция - взрывное горение с дозвуковой скоростью.

Детонация - процесс взрывчатого превращения вещества со сверхзвуковой скоростью.

Расчет радиусов зон поражения (R) и избыточного давления во фронте ударной волны () при взрыве производится по следующим формулам:

1. Бризантная зона (зона детонации):


где М - масса ТВС в резервуаре (кг). За М принимается 90% - при групповом хранения.


Для бризантной зоны.

2. Зона продуктов горения (зона огненного шара):

Радиус зоны:


Избыточное давление во фронте ударной волны рассчитывается:


Для остальных зон их радиусы рассчитываются по следующей формуле:



Зона действия ударной волны:

) Слабые разрушения - повреждения или разрушения крыт и оконных и дверных проемов. Ущерб - 10… 15% от стоимости зданий. .


Тепловой импульс () определяется по формуле:


где I-интенсивность теплового излучения взрыва ТВС на расстоянии R,


Где - удельная теплота пожара,; F - угловой коэффициент, характеризующий взаимное расположение источника горения и объекта


прозрачность воздуха


Продолжительность существования огненного шара(с)


) Средние разрушения -разрушение крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб - 30… 40%.


) Сильные разрушения - разрушения несущих конструкций и перекрытий. Ущерб - 50%. Ремонт нецелесообразен..


) Полное разрушение -обрушение зданий..


В результате взрыва на складе бензина:

) слабым разрушениям подвергнуться магазин 7, столовая 4, бытовой корпус 9, гараж 2, насосная 5, эл. мех. мастерская 6, пожарное депо 3, мед. пункт 8, электрофильтр 16, электроподстанции 16 и10, отдел сырьевых мельниц 11, сырьевое отделение 12, склад сырья 13, котельная 14. В этой зоне произойдут повреждения или разрушения крыш и оконных и дверных проемов. Ущерб 10-15% от стоимости зданий.

) Средним разрушениям подвергнуться сырьевое отделение 22, моторное отделение 23, отдел цементных мельниц 24, печное отделение 21, эл. подстанция 17, компрессорная 18, резервуар гор. воды 20. В этой зоне произойдут разрушения крыш, окон, перегородок, чердачных перекрытий, верхних этажей. Ущерб 30-40%.

) Сильным разрушениям подвергнуться часть цементных силосов 42, эл. подстанция 27, насосная гор. воды 19, часть клинкерного склада 32. В этой зоне произойдут разрушения несущих конструкций и перекрытий. Ущерб 50%. Ремонт нецелесообразен.

) Полным разрушениям подвергнуться склад бензина 38, резервуар воды 30, брызговой бассейн 36, насосная 35, мех. мастерская 29, склад огнеупоров 37, упаковочная 39, моторное отделение 33, эл. подстанция 34, отдел цем. мельниц 31, мастер. склад 28, паровозное депо 40, часть клинкерного склада 25.в этой зоне произойдут полные разрушения зданий и сооружений.


.2 Основные поражающие факторы пожара и взрыва


Основные поражающие факторы пожара: непосредственное воздействие огня (горение); высокая температура и теплоизлучение; газовая среда; задымление и загазованность помещений и территории токсичными продуктами горения. На людей, находящихся в зоне горения, воздействуют, как правило, одновременно несколько факторов: открытый огонь и искры, повышенная температура окружающей среды, токсичные продукты горения, дым, пониженная концентрация кислорода, падающие части строительных конструкций, агрегатов и установок.

Открытый огонь очень опасен, но случаи его непосредственного воздействия на людей редки. Чаще они страдают от лучистых потоков, испускаемых пламенем. Установлено, что при пожаре в сценической коробке зрелищного предприятия лучистые потоки опасны для зрителей первых рядов партера уже через полминуты после возгорания.

Температура среды . Наибольшую опасность Для людей представляет вдыхание нагретого воздуха, приводящее к поражению верхних дыхательных путей, Удушью и смерти. Так, воздействие температуры выше 100°С приводит к потере сознания и гибели через несколько минут. Опасны также ожоги кожи.

Несмотря ва большие успехи медицины в их лечении, у человека, получившего ожоги второй степени на 30% поверхности тела, мало шансов выжить.

Токсичные продукты горения. При пожарах в современных зданиях, построенных с применением полимерных и синтетических материалов, на человека могут воздействовать токсичные продукты горения. Наиболее опасен из них оксид углерода. Он в 200 - 300 раз лучше вступает в реакцию с гемоглобином крови, чем кислород, вследствие чего у человека наступает кислородное голодание. Он становится равнодушным и безучастным к опасности, у него наступают оцепенение, головокружение, депрессия, нарушается координация движений, а затем происходят остановка дыхания и смерть.

Потеря видимости вследствие задымления . Успех эвакуации людей при пожаре может быть обеспечен лишь при их беспрепятственном движении в нужном направлении. Эвакуируемые обязательно должны четко видеть эвакуационные выходы или указатели выходов. При потере видимости движение людей становится хаотичным, каждый человек движется в произвольно выбранном направлении. В результате этого процесс эвакуации затрудняется, а затем может стать неуправляемым.

Пониженная концентрация кислорода. В условиях пожара при сгорании веществ и материалов концентрация кислорода в воздухе уменьшается. Между тем понижение ее даже на 3% вызывает ухудшение двигательных функций организма. Опасной считается концентрация кислорода меньше 14%: при ней нарушаются мозговая деятельность и координация движений.

Пожары нередко являются причиной возникновения вторичных факторов поражения, не уступающих иногда по силе и опасности воздействия самому пожару. К ним можно отнести взрывынефте- и газопроводов, резервуаров с горючими веществами и аварийно химически опасными веществами, обрушение элементов строительных конструкций, замыкание электрических сетей.

"Основные поражающие факторы взрыва" : ударная волна, представляющая собой область сильно сжатого воздуха, распространяющегося во все стороны от центра взрыва со сверхзвуковой скоростью; осколочные поля, создаваемые летящими обломками строительных конструкций, оборудования, взрывных устройств, боеприпасов.

Вторичными поражающими факторам и взрывов могут быть воздействие осколков стекол и обломков разрушенных зданий и сооружений, пожары, заражение атмосферы и местности, затопление, а также последующие разрушения (обрушения) зданий и сооружений.

Продукты взрыва и образовавшаяся в результате их действия воздушная ударная волна способны наносить человеку различные по тяжести травмы, в том числе смертельные.

В зонах I и II действия взрыва происходит полное поражение людей: разрыв на части, обугливание под действием расширяющихся продуктов взрыва, имеющих очень высокую температуру.

В зоне III поражение людей вызывается и непосредственным, и косвенным воздействием ударной волны. При ее непосредственном воздействии основной причиной появления у людей травм служит мгновенное повышение давления воздуха, что воспринимается человеком как резкий удар. При этом возможны повреждения внутренних органов, разрыв кровеносных сосудов, барабанных перепонок, сотрясение мозга, переломы и травмы. Кроме того, ударная волна может отбросить человека на значительное расстояние и причинить ему при ударе о землю (или препятствие) различные повреждения.

Наиболее тяжелые повреждения получают люди, находящиеся в момент прихода ударной волны вне укрытий в положении стоя.

Поражения, возникающие под воздействием ударной волны, подразделяют на легкие, средние, тяжелые и крайне тяжелые (смертельные). Характеристики поражений приведены в табл. 2.

Поражение людей, находящихся в момент взрыва в зданиях и сооружениях, зависит от степени их разрушения. Так, например, при полном разрушении здания обычно погибают все находящиеся в нем люди. При сильных и средних разрушениях может выжить примерно половина людей, а остальные получают травмы различной тяжести, так как многие могут оказаться под обломками конструкций, а также в помещениях с заваленными и разрушенными путями эвакуации.

Косвенное воздействие ударной волны заключается в поражении людей летящими обломками зданий и сооружений, камнями, битым стеклом и другими предметами, увлекаемыми ею.

При слабых разрушениях зданий гибель людей маловероятна. Однако некоторые из них могут получить травмы различной тяжести.


Заключение


При различных ЧС, зоны поражения и последствия зависят от источника возникновения. В моем РГЗ я рассмотрел 2 чрезвычайные ситуации техногенного характера разного типа аварий. Первая авария с выбросом аварийно-химически опасного вещества - хлора, с большой зоной поражения и опасным воздействием на человека и окружающую среду. Вторая представляет собой аварию на взрыво-пожароопасном объекте - складе легковоспламеняющихся, горючих материалов. В результате аварии в зону поражения попадает цементный завод, прилегающая территория и люди, работающие на нем.

Способом защиты от ЧС является совокупность взаимоувязанных по времени, ресурсам и месту проведения мероприятийРСЧС, направленных на предотвращение или предельное снижение потерь населения и угрозы его жизни и здоровью от поражающих факторов и воздействий источников чрезвычайных ситуаций.

Необходимость подготовки и осуществления мероприятий по защите населения от чрезвычайных ситуаций природного и техногенного характера обусловливается:

§риском для человека подвергнуться воздействию поражающих факторов стихийных бедствий, аварий, природных и техногенных катастроф;

§предоставленным законодательством правом людей на защиту жизни, здоровья и личного имущества в случае возникновения чрезвычайных ситуаций.

Мероприятия защиты населения являются составной частью предупредительных мер и мер по ликвидации чрезвычайных ситуаций и, следовательно, выполняются как в превентивном (предупредительном), так и оперативном порядке с учетом возможных опасностей и угроз. При этом учитываются особенности расселения людей, природно-климатические и другие местные условия, а также экономические возможности по подготовке и реализации защитных мероприятий.

Мероприятия по подготовке страны к защите населения проводятся по территориально-производственному принципу. Они осуществляются не только в связи с возможными чрезвычайными ситуациями природного и техногенного характера, но и в предвидении опасностей, возникающих при ведении военных действий или вследствие их, поскольку значительная часть этих мероприятий эффективна как в мирное, так и военное время.

Меры по защите населения от чрезвычайных ситуаций осуществляются силами и средствами предприятий, учреждений, организаций, органов исполнительной власти субъектов Российской Федерации, на территории которых возможна или сложилась чрезвычайная ситуация.

Комплекс мероприятий по защите населения включает:

§оповещение населения об опасности, его информирование о порядке действий в сложившихся чрезвычайных условиях;

§эвакуационные мероприятия;

§меры по инженерной защите населения;

§меры радиационной и химической защиты;

§медицинские мероприятия;

§подготовку населения в области защиты от чрезвычайных ситуаций.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

При расчете параметров волны давления при сгорании газо-, паровоздушного облака использовался программный комплекс «ТОКСИ+Risk. Оценки риска и расчета последствий аварий на производственных объектах» (в соответствии с Приложением 3 к пункту 18 Методики определения расчетных величин пожарного риска на производственных объектах (Приложение к МЧС РФ от 10 июля 2009 г. № 404)).

Основными структурными элементами алгоритма расчетов являются:

  • определение ожидаемого режима сгорания облака;
  • расчет максимального избыточного давления и импульса фазы сжатия воздушных волн давления для различных режимов;
  • определение дополнительных характеристик взрывной нагрузки;
  • оценка поражающего воздействия.

Ожидаемый режим сгорания облака зависит от типа горючего вещества и степени загроможденности окружающего пространства.

Для расчета были приняты следующие условия:

  • облако ТВС расположено на поверхности земли;
  • класс горючих веществ по степени чувствительности для нефти — 3 – средне чувствительные вещества (по нефти), для газа — 2 – чувствительные вещества (по пропану) для склада пропановых баллонов, 4 – слабо чувствительные вещества (по метану) для газопровода;
  • класс окружающего пространства по степени загроможденности III – средне загроможденное пространство: отдельно стоящие технологические установки, резервуарный парк.

В случае образования паровоздушной смеси в незагроможденном технологическим оборудованием пространстве и его зажигании относительно слабым источником (например, искрой) сгорание этой смеси происходит, как правило, с небольшими видимыми скоростями пламени. При этом амплитуды волны давления малы и могут не приниматься во внимание при оценке поражающего воздействия. В этом случае реализуется так называемый пожар-вспышка, при котором зона поражения высокотемпературными продуктами сгорания паровоздушной смеси практически совпадает с максимальным размером облака продуктов сгорания (т.е. поражаются в основном объекты, попадающие в это облако).

Радиус воздействия высокотемпературных продуктов сгорания паровоздушного облака при пожаре-вспышке производится с использованием программного комплекса «ТОКСИ+Risk. Оценки риска и расчета последствий аварий на производственных объектах» (в соответствии с формулой П3.67 Приложения 3 к пункту 18 Методики определения расчетных величин пожарного риска на производственных объектах (Приложение к МЧС РФ от 10 июля 2009 г. № 404)).

Результаты расчета параметров волны давления при сгорании ТВС в открытом пространстве приведены в таблице 14.

Результаты расчета зон действия поражающих факторов при взрыве облака ТВС в открытом пространстве

№ оборудования по схеме № сценария Расстояние (r, м) от геометрического центра топливовоздушного облака до границы зоны с заданным избыточным давлением, кПа Радиус воздействия высокотемпературных продуктов сгорания при «пожаре-вспышке», м
100 53 28 12 5 3
Площадка фильтров-грязеуловителей ФГ-1…2 С3 6 16 41 71
Резервуар товарной нефти РВС-4500 Р1…Р3 С3 (первичное облако) 37 110 273 476
С3 (вторичное облако) 22 64 160 278
Площадка регулирования давления С3 6 16 41 71
Площадка путевого подогревателя С3 6 16 41 71
Склад пропановых баллонов С5 8 12 21 46 96
Резервуар аварийного топлива для котельной С3 6 16 41 71
Площадка для АЦ для сбора нефти (поз. 12.1…12.3) С3 6 16 41 71
Газопровод высокого давления Д 89х6 мм С5 Максимальное избыточное давление взрыва 2,0 кПа 17

В таблице 15 приведены значения критического давления для людей, находящихся в зданиях (согласно Руководству по оценке пожарного риска для промышленных предприятий).

Значения критического давления для людей, находящихся в зданиях

Вид воздействия Давление воздействия, кПа
Люди, находящиеся в неукрепленных зданиях, погибнут в результате прямого поражения УВ, под развалинами зданий или вследствие удара о твердые предметы 190
Наиболее вероятно, что все люди, находящиеся в неукрепленных зданиях, либо погибнут, либо получат серьезные повреждения в результате действия взрывной волны, либо при обрушении здания или перемещении тела взрывной волной 69 ¸ 76
Люди, находящиеся в неукрепленных зданиях, либо погибнут или получат серьезные повреждения барабанных перепонок и легких под действием взрывной волны, либо будут поражены осколками и развалинами здания 55
Обслуживающий персонал получит серьезные повреждения с возможным летальным исходом в результате поражения осколками, развалинами здания, горящими предметами и т.п. Имеется 10 %-я вероятность разрыва барабанных перепонок 24
Возможна временная потеря слуха или травмы в результате вторичных эффектов взрывной волны, таких, как обрушение зданий, и третичного эффекта переноса тела. Летальный исход или серьезные повреждения от прямого воздействия взрывной волны маловероятны 16
С высокой надежностью гарантируется отсутствие летального исхода или серьезных повреждений. Возможны травмы, связанные с разрушением стекол и повреждением стен здания 5,9 ¸ 8,3

В таблицах 16 и 17 приведены значения критического давления для разрушения ударной волной тех или иных элементов зданий и для повреждений некоторых промышленных конструкций (согласно Руководству по оценке пожарного риска для промышленных предприятий).

Значения критического давления для разрушения ударной волной тех или иных элементов зданий

Характер повреждений элементов зданий DР, кПа
Разрушение остекления 2 ¸ 7
Разрушение перегородок и кровли:
деревянных каркасных зданий 12
кирпичных зданий 15
железобетонных каркасных зданий 17
Разрушение перекрытий:
деревянных каркасных зданий 17
промышленных кирпичных зданий 28
промышленных зданий со стальным и железобетонным каркасом 30
зданий с массивными стенами 42
Разрушение стен:
шлакоблочных зданий 22
деревянных каркасных зданий 28
кирпичных зданий со стенами в 1,5 кирпича 40
зданий с массивными стенами 100
Разрушение фундаментов 215 ¸ 400

Значения критического давления для повреждений некоторых промышленных конструкций

Характер повреждений промышленных конструкций DР, кПа
Незначительное повреждение стальных конструкций каркасов, ферм 8 ¸ 10
Разрушение стальных каркасов, ферм и перемещение оснований 20
Разрушение промышленных стальных несущих конструкций 20 ¸ 30
Разрушение опорных структур резервуаров 100
Перемещение цилиндрических резервуаров, повреждение трубопроводов 50 ¸ 100
Повреждение ректификационных колонн 35 ¸ 80
Незначительные деформации трубопроводных эстакад 20 ¸ 30
Перемещение трубопроводных эстакад, повреждение трубопроводов 35 ¸ 40
Разрушение трубопроводных эстакад 40 ¸ 55

В таблице 18 приведено предельно допустимое избыточное давление при сгорании газо-, паровоздушных смесей в помещениях или в открытом пространстве (согласно Приложения 4 к пункту 20 Методики определения расчетных величин пожарного риска на производственных объектах).

Предельно допустимое избыточное давление при сгорании газо-, паро- или пылевоздушных смесей в помещениях или в открытом пространстве

В таблице 19 приведены значения показателя избыточного давления, вызывающего различные виды разрушений зданий, согласно .

Значения показателя избыточного давления, вызывающего различные виды разрушений

Тип зданий, сооружений Степень разрушения при избыточном давлении на фронте падающей ударной волны, кПа
Слабое Среднее Сильное Полное
Промышленные здания с легким каркасом и бескаркасной конструкцией 10-25 25-35 35-45 >45
Складские кирпичные здания 10-20 20-30 30-40 >40
Одноэтажные складские помещения с металлическим каркасом и стеновым заполнением из листового металла 5-7 7-10 10-15 >15
Бетонные и железобетонные здания и антисейсмические конструкции 25-35 80-120 150-200 >200
Здания железобетонные монолитные повышенной этажности 25-45 45-105 105-170 170-215
Котельные, регуляторные станции в кирпичных зданиях 10-15 15-25 25-35 35-45
Деревянные дома 6-8 8-12 12-20 >20
Подземные сети, трубопроводы 400-600 600-1000 1000-1500 >1500
Трубопроводы наземные 20 50 130
Кабельные подземные линии до 800 >1500
Цистерны для перевозки нефтепродуктов 30-50 50-70 70-80 >80
Резервуары и емкости стальные наземные 35-55 55-80 80-90 >90
Подземные резервуары 40-75 75-150 150-200 >200

Слабые разрушения — частичное разрушение внутренних перегородок, кровли, дверных и оконных коробок, легких построек и др. Основные несущие конструкции сохраняются. Для полного восстановления требуется капитальный ремонт.

Средние разрушения — разрушение меньшей части несущих конструкций. Большая часть несущих конструкций сохраняется и лишь частично деформируется. Может сохраняться часть ограждающих конструкций (стен), однако при этом второстепенные и несущие конструкции могут быть.

Средние разрушения — разрушение меньшей части несущих конструкций. Большая часть несущих конструкций сохраняется и лишь частично деформируется. Может сохраняться часть ограждающих конструкций (стен), однако при этом второстепенные и несущие конструкции могут быть частично разрушены. Здание выводится из строя, но может быть восстановлено.

Сильные разрушения — разрушение большей части несущих конструкций. При этом могут сохраняться наиболее прочные элементы здания, каркасы, ядра жесткости, частично стены и перекрытия нижних этажей. При сильном разрушении образуется завал. В большинстве случаев восстановление нецелесообразно.

Полные разрушения — полное обрушение здания, от которого могут сохраниться только поврежденные (или неповрежденные) подвалы и незначительная часть прочных элементов. При полном разрушении образуется завал. Здание восстановлению не подлежит.

В таблице 20 приведены воздействия ударной волны на человека согласно «Чрезвычайные ситуации техногенного характера. Прогнозирование и оценка: детерминированные методы количественной оценки опасностей техносферы» .

Воздействие ударной волны на человека

Рф, кПа Степень

поражения

Характер поражения
Свыше 100 Крайне Безусловное смертельное поражение.

Получаемые травмы очень часто приводят к смертельному исходу

60-100 Тяжелая Сильная контузия всего организма, повреждение внутренних органов и мозга, тяжелые переломы конечностей. Возможен смертельный исход.
40-60 Средняя Серьёзные контузии, повреждение органов слуха, кровотечение из носа и ушей, сильные вывихи и переломы конечностей.
20-40 Легкая Легкая общая контузия организма, временное повреждение слуха, ушибы и вывихи конечностей

РАСЧЕТ ПОСЛЕДСТВИЙ ВЗРЫВА

ВНУТРИ ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ

Развитие химической промышленности сопровождается увеличением масштабов производства, мощности установок и аппаратов и усложнением технологических процессов и режимов управления производством. Вследствие усложнения и увеличения производства, происходящие аварии имеют все более тяжкие последствия. Особую опасность представляют химические, взрывоопасные производства, атомные электростанции , склады взрывчатых и легковоспламеняющихся веществ, боеприпасов , а также сосуды и резервуары, предназначенные для хранения и транспортировки нефтепродуктов и сжиженных газов.

В настоящее время в мире все больше внимания уделяется вопросам обеспечения на высоком уровне защиты окружающей среды, безопасности жизнедеятельности и охране труда . Одним из возможных путей снижения риска возникновения чрезвычайных ситуаций на промышленных объектах является анализ произошедших аварий. На их основе разрабатываются мероприятия по предупреждению возникновения аварий и предотвращению опасных последствий.

Одним из видов аварий на промышленных объектах являются взрывы технологического оборудования. Взрыв оборудования несет потенциальную опасность поражения людей и обладает разрушительной способностью.

Взрыв (взрывчатое превращение) – это процесс быстрого физического или химического преобразования вещества, сопровождающийся переходом потенциальной энергии этого вещества в механическую энергию движения или разрушения . В зависимости от ви­да энергоносителя и условий энерговыделения при взрыве различают химические и физиче­ские источники энергии.


Физический взрыв может быть вы­зван внезапным разрушением сосуда со сжатым газом или с перегретой жид­костью, смешиванием перегретых твердых веществ (расплава) с холодными жидкостями и т. д.

Источником химического взрыва являются быстропротекающие самоускоряющиеся экзотермические реакции взаимодействия горючих веществ с окислителями или термического раз­ложения нестабильных соединений.

Физические взрывы в оборудовании

Физические взрывы, как правило, связывают с взрывами сосудов от давления газов или паров .

В химической технологии часто приходится преднамеренно сжимать как инертные, так и горючие газы, затрачивая при этом электрическую, тепловую или другие виды энергии. При этом сжатый газ (пар) находится в герметичных аппаратах различных геометрических форм и объемов. Однако в ряде случаев сжатие газов (паров) в технологических системах происходит случайно вследствие превышения регламентированной скорости нагрева жидкости внешним теплоносителем .

При взрывах сосудов под давлением могут возникать сильные ударные волны, образуется большое число осколков, что приводит к серьезным разрушениям и травмам. При этом общая энергия взрыва переходит в основном в энергию ударной волны и кинетическую энергию осколков.

Многие жидкости хранятся или используются в условиях, когда давление их паров значительно превышает атмосферное. Энергия перегрева жидкости может быть источником чисто физических взрывов, например, при интенсивном перемешивании жидкостей с различными температурами, при контакте жидкости с расплавами металла и нагретыми твердыми телами. При этом не происходит химических превращений, а энергия перегрева расходуется на парообразование, которое может протекать с такой скоростью, что возникает ударная волна. Масса образующихся паров и скорость парообразования при этом определяются по материальным и тепловым балансам двух возможных моделей аварийных ситуаций: 1) тепловыделение с парообразованием происходит при постоянном объеме; 2) за тепловыделением при сохранении объема следует расширение с сохранением теплового равновесия.

При смешивании двух жидкостей с существенно разными температурами возможны явления физической детонации с образованием облака жидких капель одного из компонентов.

На промышленных предприятиях нейтральные (негорючие) сжатые газы - азот , диоксид углерода, фреоны, воздух - в больших объемах находятся главным образом в сферических газгольдерах высокого давления.

9 июля 1988 г произошел взрыв шарового газгольдера сжатого воздуха объемом 600 м3 (радиус сферы 5,25 м), изготовленного из стали толщиной стенки 16 мм и рассчитанного для работы под давлением 0,8 МПа. Взрыву газгольдера (происшедшему при давлении 2,3 МПа) предшествовало медленное повышение давления до предела текучести стали, из которой он был изготовлен.

Шаровой газгольдер входил в состав технологического агрегата производства карбамида, введенного в эксплуатацию в апреле 1988 г. Воздух в газгольдер поступал из общей заводской технологической линии через обратный клапан и арматуру. Газгольдер не был оборудован средствами сброса давления, так как максимально возможное давление воздуха (0,8 МПа) в нем обеспечивалось его стабилизацией в технологической системе и характеристиками воздушных компрессоров типа ВП-50-8. Контроль давления осуществлялся показывающим по месту и регистрирующим манометрами на пульте управления.

Из газгольдера воздух поступал по системе трубопроводов на технологические нужды, в том числе в отделение очистки СО2 от горючих примесей. В это отделение воздух из газгольдера отводился по трубопроводу диаметром 150 мм в нагнетательную линию турбокомпрессора СО2 типа «Бабета», работающую под давлением 2,3 МПа и являющуюся одновременно приемной линией дожимного до 10,0 МПа поршневого компрессора (4ДВК-210-10); подводимый воздух предназначался для продувки системы компремирования и через нее технологической линии от СО2 перед ремонтом.


По окончании ремонта технологической установки был включен турбокомпрессор СО2 и через 10 мин при движении давления в линии нагнетания 2,3 МПа был включен поршневой компрессор с регулировкой на режимное давление 10,0 МПа. После пуска центробежного компрессора СО2 давление в воздушном газгольдере стало возрастать; при этом манометр со шкалой 0,8 МПа на пульте управления «зашкалило». Диоксид через неплотно закрытый вентиль из нагнетательного трубопровода, работающего центробежного компрессора по воздушной линии поступал в воздушный газгольдер. Давление газа в газгольдере возрастало в течение 4 ч, что привело к разрушению газгольдера от превышения давления.

Поступление СО2 в воздушный газгольдер подтверждается снижением температуры воздуха до 0°С за счет дросселирования СО2 с давлением нагнетания центробежного компрессора до давления в газгольдере.

В областях низких давлений ударной волны разрушено до 100% остекления в шести производственных зданиях, находящихся на расстоянии м от места установки взорвавшегося газгольдера; незначительные повреждений остекления (до 10%) отмечались в домах жилых кварталов, расположенных в 2500 м от места взрыва.

Большую опасность представляли разлетающиеся осколки оболочки газгольдера.

Химические взрывы в оборудовании

Экзотермические химические реакции проводят в технологических системах (реакторах), сбалансированных по тепловому режиму. Выделяемое при реакции тепло отводится внешним хладагентом через стенки теплообменных элементов с нагретыми продуктами реакции или с избыточным сырьем за счет его испарения и т. д. Устойчивое протекание реакционного процесса обеспечивается равенством скоростей тепловыделения и теплоотвода. Скорость реакции и соответственно притока тепла возрастает по степенному закону с ростом концентрации реагентов и быстро увеличивается при повышении температуры.

При выходе химической реакции из-под контроля возможны следующие механизмы взрывов .

1. Если реакционная масса представляет собой конденсированные ВВ, при достижении критической температуры возможна детонация продукта; при этом взрыв будет происходить по механизму взрыва точечного заряда ВВ в оболочке. Энергия взрыва будет определяться тротиловым эквивалентам всей массы ВВ в системе.

2. В условиях газофазных процессов возможно термическое разложение газов или взрывное горение газовой смеси; их следует рассматривать как взрывы газов в замкнутых объемах с учетом реальных энергетических потенциалов и тротиловых эквивалентов.

3. В жидкофазных процессах возможен вариант аварийного взрывного энерговыделения: перегрев жидкости и повышение давления пара над ней до критического значения.

Общая энергия взрыва облака будет равна сумме эквивалентов теплот сгорания паров, имеющихся в системе и дополнительно образующихся при испарении жидкости.

Причинами выхода из-под контроля экзотермической химической реакции часто являются снижение теплопритока в жидкофазных периодических процессах с большими массам и реагирующих веществ и ограниченные возможности теплоотвода обычными методами. К таким процессам относится, в частности, полимеризация в массе мономера, при которой скорость реакции регулируется обычными методами, а также дозировкой инициирующих веществ. На случай выхода процесса из-под контроля дополнительно предусматривают ввод в реакционную массу веществ, снижающих скорость или подавляющих экзотермическую реакцию.

Некоторые вещества могут полимеризоваться более или менее самопроизвольно, и обычные реакции полимеризации будут экзотермическими. Если мономер - летучий, как это часто бывает, достигается стадия, при которой может произойти опасное повышение давления. Иногда полимеризация может протекать только при повышенных температурах, но для некоторых веществ, таких, как этиленоксид, полимеризация может начаться при комнатной температуре, особенно когда исходные соединения загрязняются веществами, ускоряющими полимеризацию.

Подобные аварии происходили при полимеризации винилхлорида и других мономеров, в хранилищах хлоропрена и в железнодорожных цистернах с жидким хлором, углеводородами и другими активными соединениями, когда в них ошибочно закачивали вещества, взаимодействующие с содержащимися в них продуктами . При значительном превышении тепловыделения по сравнению с теплоотводом при таких авариях происходит полное раскрытие технологической системы, при котором резко уменьшается давление, снижается скорость химической реакции или она совсем прекращается. В этом случае общий энергетический потенциал составляет сумму эквивалентов энергий сгорания паров (газов), находящихся над жидкостью и образующихся в результате испарения под действием тепла перегрева жидкости до температуры, соответствующей критическим условиям разрушения системы.

Так же самый простой случай взрыва - это процесс разложения, который дает газообразные продукты . Один из примеров - пероксид водорода , который разлагается со значительной теплотой реакции, давая водяной пар и кислород:

2Н2О2 ->2Н2О + О2 - 23,44 ккал/моль

Как бытовой продукт пероксид водорода продается в виде 3%-ного водного раствора и представляет незначительную опасность. Иначе дело обстоит с пероксидом водорода «высокой пробы», концентрация которого составляет 90% или более. Разложение такой Н2О2 ускоряется рядом веществ, что используется в качестве реактивного топлива или в газовой турбине для накачки топлива к главным двигателям.

Одним из примеров может служить окислительно-восстановительные реакции и конденсации :

1). Окислительно-восстановительные реакции, в которых воздух или кислород реагирует с восстановителем, весьма обычны и составляют основу всех реакций горения. В тех случаях, когда восстановитель является недиспергированным твердым веществом или жидкостью, реакции горения протекают недостаточно быстро, чтобы стать взрывными. Если твердое вещество мелко раздроблено или жидкость находится в виде капелек, то возможен быстрый рост давления. Это может привести в условиях замкнутого объема к росту избыточного давления вплоть до 0,8 МПа.

2). Реакции конденсации весьма распространены. Они особенно широко применяются в производстве красок, лаков и смол, где служат основой процессов в реакторах непрерывного действия со змеевиками для нагрева или охлаждения. Зарегистрировано много примеров неконтролируемых реакций, обусловленных тем, что скорость переноса тепла в таких сосудах является линейной функцией разности температур между реакционной массой и охладителем, тогда как скорость реакции - это экспоненциальная функция температуры реагента. Однако благодаря тому, что скорость выделения тепла, будучи функцией концентрации реагентов, во время протекания реакции уменьшается, нежелательный эффект до некоторой степени компенсируется.

Таким образом, энергия взрыва, вызванного выходом из-под контроля экзотермической химической реакции, зависит от характера технологического процесса и его энергетического потенциала. Такие процессы, как правило, оснащаются соответствующими средствами управлений и противоаварийной защиты, что снижает возможность развития аварии. Однако химические реакции часто являются источником неуправляемого высвобождения энергии в аппаратуре, в которой не предусмотрен организованный теплоотвод. В этих условиях начавшиеся самоускоряющиеся химические реакции неизбежно приводят к разрушению технологических систем.

Статистика аварий

В таблице 1 представлены данные об авариях, связанных с взрывами внутри технологического оборудования.

Таблица 1 - Перечень произошедших аварий

Дата и

место

аварии

Вид аварии

Описание аварии и

основные причины

Масштабы развития аварии, максимальные зоны действия поражающих факторов

Число пострадавших

Источник информации

г. Ионава

Взрыв резервуара-хранилища

В результате полимеризации винилацетата выделилось тепло, достаточного для создания разрушительного давления.

Разрушение резервуара.

Разрушение аппарата окисления

При выходе из-под контроля экзотермической реакции окисления изопропилбензола воздухом произошло разрушение аппарата от резкого подъема давления.

Разрушение аппарата.

склад Сумгаитского ПО

Взрыв сферического резервуара

Вследствие начавшегося процесса полимеризации бутадиена произошло разрушение резервуара.

Врыв резервуара повлек за собой взрыв цистерны. Осколками повреждены соседние резервуары и здание.

Продолжение таблицы 1

Взрыв газгольдера

Взрыву газгольдера предшествовало медленное повышение давления до предела текучести стали.

На расстоянии м от газгольдера 100% разрушено остекление,

2500 м – 10%.

02.1990 Новокуйбышевское НПЗ

Взрыв сосуда

Сосуд разрушился в результате превышения давления паров пропан-бутановой фракции в сепараторе.

Разрушение емкости по сплошному металлу обечайки.

Взрыв реактора

В результате экзотермической химической реакции разложения нитромассы и превышения давления произошел взрыв реактора.

Разрушено здание, в котором находился реактор.

07.1978 Сан-Карлос

Разрыв оболочки автоцистерны

Осколки разлетелись на расстояние 250 м, 300 м, 50 м. Тягач оказался на расстоянии 100м.

07.1943 Людвигсгафене,

Взрыв цистерны

Из-за превышения гидравлического давления

Разрушение оболочки.

Продолжение таблицы 1

Германия

разрушилась цистерна, содержащая бутан-бутиленовой смеси.

07.1948 Людвигсгафене, Германия

Взрыв цистерны диметилового эфира

Из-за превышения гидравлического давления разрушилась цистерна.

Разрушение оболочки.

10.02.1973 Нью-Йорк, США

Взрыв в резервуаре

При ремонте резервуара взорвались пары природного газа от искры.

Разрушение резервуара.

40 человек погибло, 2 пострадали.

24.10.1973 Шеффилд, Англия

Взрыв подземного резервуара

Взрыв остатков вещества от оборудования для резки материалов пламенем.

Радиус разрушений составил около полукилометра.

3 человека погибло, 29 получили ранения

19.12.1982 г. Каракас, Венесуэла

Взрыв резервуара

На складе нефтехранилища взорвался резервуар с 40 тыс. т топлива

Горящая нефть хлынула в город и в море. Загорелся танкер в бухте и взорвался еще один резервуар на берегу.

140 человек погибло, пострадало более 500.

20.06.2001 Каталония, Испания

Взрыв резервуара

Взрыв резервуара с техническим спиртом произошел на химическом предприятии.

2 человека погибло

Методика расчета

При взрывах оборудования основным поражающим фактором является ударная воздушная волна .

При оценке параметров аварийного взрыва емкости с инертным газом (смесью газов) допускается, что оболочка имеет сферическую форму. Тогда напряжение в стенке сферической оболочки определяется по формуле:

σ = ΔP · r/(2d), (1)

где σ – напряжение в стенке сферической оболочки, Па;

ΔP – перепад давлений, Па;

r – радиус стенки оболочки, м;

d – толщина стенки оболочки, м.

Преобразование формулы (1) позволяет рассчитать разрушающее давление (условие разрушения - σ ≥ σв):

ΔP = 2d · σв/ r, (2)

где σв – временное сопротивление разрушению материала, Па.

Давление парогазовой смеси в емкости:

Р = ΔP + Р0, (3)

где Р0 – атмосферное давление, 0,1·106 Па.

Уравнение изэнтропы:

Р/Р0 = (ρ/ρ0)γ, (4)

где γ – показатель адиабаты газа;

ρ0 – плотность газа при атмосферном давлении, кг/м3,

ρ – плотность газа при давлении в емкости, кг/м3.

Плотность газа при давлении в емкости определяется после преобразования уравнения изэнтропы (4):

ρ = ρ0 · (Р/Р0)1/γ, (5)

Полная масса газа:

С = ρ · V, (6)

где V – объем парогазовой смеси, м3.

При взрыве емкости под внутренним давлением Р инертного газа (смеси газов) удельная энергия Q газа:

Q= ΔP/[ρ · (γ - 1)] (7)

В случае сжатого взрывоопасного газа:

Q = Qв + ΔP/[ ρ· (γ - 1)], (8)

где Qв – удельная энергия взрыва газовой смеси, Дж/кг.

Тротиловый эквивалент взрыва емкости с газом составит:

qтнт = Q · С/ Qтнт, (9)

где Qтнт – удельная энергия взрыва тротила, равная 4,24·106 Дж/кг.

Эквивалент по ударной волне оценивается с коэффициентом 0,6:

qу. в. = 0,6 · qтнт (10)

q = 2 · qу. в. (11)

Избыточное давление на фронте ударной волны (ΔРфр, МПа) на расстоянии R определяется по формуле для сферической УВВ в свободном пространстве :

где , R – расстояние от эпицентра взрыва до реципиента, м.

В таблице 2 представлены значения предельно допустимого избыточного давления ударной волны при сгорании газо-, паро - или пылевоздушных смесей в помещении или открытом пространстве , для которых подбираются расстояния для определения зон поражения.

Таблица 2 – Предельно допустимые избыточные давления при сгорании газо-, паро - или пылевоздушных смесей в помещении или открытом пространстве

Степень поражения

Избыточное давление, кПа

Полное разрушение зданий

(смертельное поражение человека)

50 %-ное разрушение зданий

Средние повреждения зданий

Умеренные повреждения зданий (повреждения внутренних перегородок, рам, дверей и т. п.)

Нижний порог повреждения человека волной

давления

Малые повреждения (разбита часть остекления)

Импульс волны давления, кПа·с:

Формулы (12,13) справедливы при условии ≥0,25.

Условная вероятность поражения избыточным давлением, развиваемым при взрыве парогазовоздушных смесей, человека, находящегося на определенном расстоянии от эпицентра аварии, определяется с помощью «пробит–функции» Pr, которая рассчитывается по формуле :

Pr = 5 – 0,26·ln(V) , (14)

где

Связь функции Рr с вероятностью Р той или иной степени поражения находится по таблице 3 .

Таблица 3 – Связь вероятности поражения с функцией «пробит»

Основной целью расчетов по данной методике является определение радиусов зон различной степени поражения УВВ зданий, сооружений и человека и определение вероятности поражения людей, находящихся на определенном расстоянии от эпицентра взрыва.

Примеры расчетов

Физические взрывы

Пример №1

Взрыв шарового газгольдера сжатого воздуха объемом V = 600 м3 произошел вследствие превышения регламентированного давления. Аппарат рассчитан для работы под давлением Р = 0,8 МПа. Взрыв произошел при давлении Р = 2,3 МПа. Плотность газа при нормальном давлении ρ = 1,22 кг/м3, показатель адиабаты γ = 1,4. Оценить последствия взрыва сжатого воздуха в шаровом газгольдере (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 50 м.

Решение :

Определяется перепад давлений, преобразовав формулу (3):

ΔР = 2,3 - 0,1 = 2,2 МПа

Рассчитывается плотность газа по уравнению (5):

ρ = 1,22 · (2,3/0,1)1/1,4 = 11,46 кг/м3

Полная масса газа:

С = 11,46 · 600 = 6873 кг

Q = 2,2 / = 0,48 МДж/кг

qтнт = 0,48 · 6873 / 4,24 = 778 кг

Эквивалент по ударной волне:

qу. в. = 0,6 · 778 = 467 кг

Применительно к наземному взрыву принимается значение:

q = 2 · 467 = 934 кг

Результаты расчета приведены ниже (таблица 4).

Таблица 4 – Радиусы зон воздействия УВВ

ΔРфр, кПа

Для определения вероятности поражения человека на заданном расстоянии по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 50 м:

50/(9341/3) = 5,12

ΔРфр = 0,084/5,12 + 0,27/5,122 + 0,7/5,123 = 31,9 кПа.

I = 0,4 · 9342/3/50 = 0,76 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 50 м от эпицентра аварии, определяется с помощью пробит – функции Pr, которая рассчитывается по формуле (14):

V = (17500/(31,9·103))8,4 + (290/(0,79·103))9,3 = 0,0065

Pr = 5 - 0,26 · ln(0,0065) = 6,31

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 50 м, может получить травмы различной степени тяжести с вероятностью 91%.

Пример №2

Взрыв шарового газгольдера диоксида углерода объемом V = 500 м3 (радиус сферы 4,95 м) произошел вследствие превышения регламентированного давления. Аппарат изготовлен из стали 09Г2С толщиной стенки 16 мм и рассчитан для работы под давлением Р = 0,8 МПа. Временное сопротивление разрушения материала σв = 470 МПа. Плотность газа при нормальном давлении ρ = 1,98 кг/м3, показатель адиабаты γ = 1,3. Оценить последствия взрыва сжатого диоксида углерода в шаровом газгольдере (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 120 м.

Решение:

Разрушающее давление определяется по формуле (2):

ΔP = 2 · 0,016 · 470/4,95 = 3 МПа

Определяется давление парогазовой смеси в емкости по формуле (3):

Р = 3 + 0,1 = 3,1 МПа

Рассчитывается плотность газа по уравнению (5) при давлении Р:

ρ = 1,98 · (3,1/0,1)1/1,3 = 28,05кг/м3

Полная масса газа:

С = 28,05 · 550 = 14026 кг

По формуле (7) рассчитывается удельная энергия газа:

Q = 3 / = 0,36 МДж/кг

Тротиловый эквивалент взрыва газа составит:

qтнт = 0,36 · 14026 / 4,24 = 1194 кг

Эквивалент по ударной волне:

qу. в. = 0,6 · 1194 = 717 кг

Применительно к наземному взрыву принимается значение:

q = 2 · 717 = 1433 кг

Методом подбора величины расстояния от эпицентра взрыва по формулам (12,13) определяются радиусы зон различной степени поражения УВВ зданий, сооружений и человека, указанные в таблице 2.

Результаты расчета приведены ниже (таблица 5).

Таблица 5 – Радиусы зон воздействия УВВ

ΔРфр, кПа

Для определения вероятности поражения человека на заданном расстоянии по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 120 м:

120/(14333) = 10,64

ΔРфр = 0,084/10,64 + 0,27/10,642 + 0,7/10,643 = 10,9 кПа.

I = 0,4 · 14332/3/120 = 0,42 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 120 м от эпицентра аварии, определяется с помощью пробит – функции Pr, которая рассчитывается по формуле (14):

V = (17500/(10,9*103))8,4 + (290/(0,42*103))9,3 = 0,029

Pr = 5 - 0,26 * ln(0,029) = 5,92

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 120 м, может получить травмы различной степени тяжести с вероятностью 82%.

Химические взрывы

Пример №1

Из хранилища объемом V = 1000 м3 был слит толуол для проведения ремонта. В начале сварки произошел взрыв паров толуола. Плотность паров по воздуху при нормальном давлении ρ = 3,2, показатель адиабаты γ = 1,4, ВКПВ - 7,8 % об., теплота взрыва газа 41 МДж/кг. Оценить последствия взрыва (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 100 м.

Решение :

В хранилище атмосферное давление Р = 0,1 МПа.

Плотность паров:

ρ = 3,2 · 1,29 = 4,13 кг/м3

Объем пара находится через ВКПВ (считается, что весь объем заполнен смесью с концентрацией паров толуола, соответствующей ВКПВ):

V = 1000 · 7,8/100 = 78 м3

Полная масса газа:

С = 4,13 · 78 = 322 кг

По формуле (8) рассчитывается удельная энергия газа:

Q = 41 + 1/ = 41,06 МДж/кг

Тротиловый эквивалент взрыва составит:

qтнт = 41,06 · 322 / 4,24 = 3118 кг

Эквивалент по ударной волне:

qу. в. = 0,6 · 3118 = 1871 кг

Применительно к наземному взрыву принимается значение:

q = 2 · 1871 = 3742 кг

Методом подбора величины расстояния от эпицентра взрыва по формулам (12,13) определяются радиусы зон различной степени поражения УВВ зданий, сооружений и человека, указанные в таблице 2.

Результаты подсчета давлений и импульсов приведены ниже (таблица 6).

Таблица 6 – Радиусы зон воздействия УВВ

ΔРфр, кПа

Для определения вероятности поражения человека на заданном расстоянии по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 100 м:

100/(37421/3) = 6,44

ΔРфр = 0,084/6,44 + 0,27/6,442 + 0,7/6,443 = 22,2 кПа.

I = 0,4 · 37422/3/100 = 0,96 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 100 м от эпицентра аварии, определяется с помощью пробит – функции Pr, которая рассчитывается по формуле (14):

V = (17500/(22,2·103))8,4 + (290/(0,96·103))9,3 = 0,14

Pr = 5 - 0,26 · ln(0,14) = 5,51

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 100 м, может получить травмы различной степени тяжести с вероятностью 69%.

Пример №2

Взрыв железнодорожной цистерны объемом V = 60 м3, заполненной на 80 % толуолом, произошел в результате удара молнии. Плотность газа при нормальном давлении ρ = 4,13 кг/м3, показатель адиабаты γ = 1,4, ВКПВ – 7,8 % об., теплота взрыва газа 41 МДж/кг. Давление в цистерне Р = 0,1 МПа. Оценить последствия взрыва (определить радиусы зон различной степени поражения УВВ зданий, сооружений и человека) и определить вероятность поражения человека на расстоянии R = 30 м.

Решение :

Объем газа определяется через коэффициент заполнения и ВКПВ (считается, что весь объем заполнен смесью с концентрацией паров толуола, соответствующей ВКПВ):

V = 60 · 0,2 · 0,078 = 0,936 м3

Полная масса газа:

С = 4,13 · 0,936 = 3,9 кг

По формуле (7) рассчитывается удельная энергия газа:

Q = 41 + 0,9/ = 41,1 МДж/кг

Тротиловый эквивалент взрыва составит:

qтнт = 41,1 · 3,9 / 4,24 = 37,4 кг

Эквивалент по ударной волне:

qу. в. = 0,6 · 37,4 = 22,4 кг

Применительно к наземному взрыву принимается значение:

q = 2· 22,4 = 44,8 кг

Методом подбора величины расстояния от эпицентра взрыва по формулам (12,13) определяются радиусы зон различной степени поражения УВВ зданий, сооружений и человека, указанные в таблице 2.

Результаты подсчета давлений и импульсов приведены ниже (таблица 7).

Таблица 7 – Радиусы зон воздействия УВВ

ΔРфр, кПа

Для определения вероятности поражения человека на расстоянии R по формулам (12,13) рассчитываются избыточное давление во фронте волны и удельный импульс для расстояния 30 м:

30/(44,81/3) = 8,4

ΔРфр = 0,084/8,4 + 0,27/8,42 + 0,7/8,43 = 14,9 кПа.

I = 0,4 · 44,82/3/30 = 0,17 кПа·с

Условная вероятность поражения избыточным давлением человека, находящегося на 70 м от эпицентра аварии, определяется с помощью пробит – функции Pr, которая рассчитывается по формуле (14):

V = (17500/(14,9·103))8,4 + (290/(0,17·103))9,3 = 161

Pr = 5 - 0,26·ln(161) = 3,7

С помощью таблицы 3 определяется вероятность. Человек, находящийся на расстоянии 30 м, может получить травмы различной степени тяжести с вероятностью 10%.

Список использованной литературы

1. Челышев теории взрыва и горения. Учебное пособие – М.: Министерство обороны СССР, 1981. – 212 с.

2. Взрывные явления. Оценка и последствия: В 2-х книгах. Книга 1. Пер. с англ./ – М.: Мир, 1986. – 319 с.

3. Бесчастнов взрывы. Оценка и предупреждение – М.: Химия, 1991. – 432 с.

5. http://www. Пресс-Центр. ru

6. Аварии и катастрофы. Предупреждение и ликвидация последствий. Учебное пособие. Книга 2. и др. – М.: Изд. АСВ, 1996. – 384с.

7. ГОСТ Р 12.3.047-98 ССБТ. Пожарная безопасность технологических процессов. Общие требования. Методы контроля.

8. РД Методика оценки последствий аварийных взрывов топливно-воздушных смесей.

9. Пожаровзрывоопасность веществ и материалов и средства их тушения/, и др. – М.: Химия, 1990. – 496 с.

10. Легковоспламеняющиеся и горючие жидкости. Справочник/под ред. -Агалакова – М.: Изд-во мин. коммунального хоз-ва, 1956. – 112 с.

11. , Носков и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие – Л.: Химия, 1987. – 576 с.

12. Бережковский и транспортирование химических продуктов. – Л.: Химия, 1982. – 253 с.

13. , Кондратьева безопасных аппаратов для химических и нефтехимических производств. – Л.: Машиностроение. Ленингр. Отделение, 1988. – 303 с.

14. Справочник металлиста. В 5-ти т. Т. 2. Под ред. , – М.: Машиностроение, 1976. – 720 с.

Приложения

Приложение А

Таблица А1 - Свойства газов и некоторых жидкостей

Название

Плотность вещества,

кг/м3 (при 20 оС)

Плотность по

воздуху газа (пара)*

Коэффициент адиабаты

Ацетилен

Диоксид азота

Диоксид углерода

Кислород

Пропилен

Примечание: Для определения плотности паров используется плотность воздуха при 0 оС.

Приложение Б

Таблица Б1 - Конструкционные материалы

Материал

Предел прочности,

σв МПа

Назначение

Ст3пс, Ст3сп (гр. А)

Для деталей машин, станков, резервуаров.

Для хранения разбавленной азотной и серной кислоты, раствора аммиачной селитры и аналогичных веществ с плотностью 1400 кг/м3.

Для хранения агрессивных химических продуктов плотностью 1540 кг/м3.

При изготовлении трубопроводов и аппаратов. Резервуары для хранения сжиженных газов, железнодорожные цистерны.

Трубопроводы, давление до 100 кгс/см2.

Северного исполнения для деталей машин.