Аморфные тела физика. Аморфные тела: характеристика, описание и свойства

Оформление документов

Твердые тела отличаются постоянством формы и объема и делятся на кристаллические и аморфные.

Кристаллические тела

Кристаллические тела (кристаллы) - это твердые тела, атомы или молекулы которых занимают упорядоченные положения в пространстве.
Частицы кристаллических тел образуют в пространстве правильную кристаллическую пространственную решетку .

Каждому химическому веществу, находящемуся в кристаллическом состоянии, соответствует определенная кристаллическая решетка, которая задает физические свойства кристалла.

Знаете ли вы?
Много лет назад в Петербурге на одном из неотапливаемых складов лежали большие запасы белых оловянных блестящих пуговиц. И вдруг они начали темнеть, терять блеск и рассыпаться в порошок. За несколько дней горы пуговиц превратились в груду серого порошка. "Оловянная чума" - так к прозвали эту «болезнь» белого олова.
А это была всего лишь перестройка порядка атомов в кристаллах олова. Олово, переходя из белой разновидности в серую, рассыпается в порошок.
И белое и серое олово - это кристаллы олова, но при низкой температуре изменяется их кристаллическая структура, а в результате меняются физические свойства вещества.

Кристаллы могут иметь различную форму и ограничены плоскими гранями.

В природе существуют:
а) монокристаллы - это одиночные однородные кристаллы, имеющие форму правильных многоугольников и обладающие непрерывной кристаллической решеткой

Монокристаллы поваренной соли:

б) поликристаллы - это кристаллические тела, сросшиеся из мелких, хаотически расположенных кристаллов.
Большинство твердых тел имеет поликристаллическую структуру (металлы, камни, песок, сахар).

Поликристаллы висмута:

Анизотропия кристаллов

В кристаллах наблюдается анизотропия - зависимость физических свойств (механической прочности, электропроводности, теплопроводности, преломления и поглощения света, дифракции и др.) от направления внутри кристалла.

Анизотропия наблюдается в основном в монокристаллах.

В поликристаллах (например, в большом куске металла) анизотропия в обычном состоянии не проявляется.
Поликристаллы состоят из большого количества мелких кристаллических зерен. Хотя каждый из них обладает анизотропией, но за счет беспорядочности их расположения поликристаллическое тело в целом утрачивает анизотропию.

Любое кристаллическое вещество плавится и кристаллизуется при строго определенной температуре плавления : железо — при 1530°,олово - при 232°, кварц - при 1713°, ртуть - при минус 38°.

Нарушить порядок расположения в кристалле частицы могут, только если он начал плавиться.

Пока есть порядок частиц, есть кристаллическая решетка - существует кристалл. Нарушился строй частиц - значит, кристалл расплавился - превратился в жидкость, или испарился - перешел в пар.

Аморфные тела

Аморфные тела не имеют строгого порядка в расположении атомов и молекул (стекло, смола, янтарь, канифоль).

В амофных телах наблюдается изотропия - их физические свойства одинаковы по всем направлениям.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства (при ударах раскалываются на куски как твердые тела) и текучесть (при длительном воздействии текут как жидкости).

При низких температурах аморфные тела по своим свойствам напоминают твердые тела, а при высоких температурах - подобны очень вязким жидкостям.

Аморфные тела не имеют определенной температуры плавления , а значит,и температуры кристаллизации.
При нагревании они постепенно размягчаются.

Аморфные тела занимают промежуточное положение между кристаллическими твердыми телами и жидкостями.

Одно и то же вещество может встречаться и в кристаллическом и в некристаллическом виде.

В жидком расплаве вещества частицы движутся совершенно беспорядочно.
Если, например, расплавить сахар, то:

1. если расплав застывает медленно, спокойно, то частицы собираются в ровные ряды и образуются кристаллы. Так получается сахарный песок или кусковой сахар;

2. если остывание происходит очень быстро, то частицы не успевают построиться правильными рядами и расплав затвердевает некристаллическим. Так, если вылить расплавленный сахар в холодную воду или на очень холодное блюдце, образуется сахарный леденец, некристаллический сахар.

Удивительно!

С течением времени некристаллическое вещество может «переродиться», или, точнее, закристаллизоваться, частицы в них собираются в правильные ряды.

Только срок для разных веществ различен:для сахара это несколько месяцев, а для камня — миллионы лет.

Пусть леденец полежит спокойно месяца два-три.Он покроется рыхлой корочкой. Посмотрите на нее в лупу: это мелкие кристаллики сахара. В некристаллическом сахаре начался рост кристаллов. Подождите еще несколько месяцев — и уже не только корочка, но и весь леденец закристаллизуется.

Даже наше обыкновенное оконное стекло может закристаллизоваться. Очень старое стекло становится иногда совершенно мутным,потому что в нем образуется масса мелких непрозрачных кристаллов.

На стекольных заводах иногда в печи образуется «козел», то есть глыба кристаллического стекла. Это кристаллическое стекло очень прочное.Легче разрушить печь, чем выбить из нее упрямого «козла».
Исследовав его, ученые создали новый очень прочный материал из стекла - ситалл. Это стеклокристаллический материал, полученный в результате объёмной кристаллизации стекла.

Любопытно!

Могут существовать разные кристаллические формы одного и того же вещества .
Например, углерод.

Графит - это кристаллический углерод. Из графита сделаны стержни карандашей, которые оставляют след на бумаге при легком надавливании. Структура графита слоиста. Слои графита легко сдвигаются, поэтому чешуйки графита пристают к бумаге при письме.

Но существует и другая форма кристаллического углерода - алмаз .

В отличие от кристаллических твёрдых тел, в расположении частиц в аморфном теле нет строгого порядка.

Хотя аморфные твёрдые тела способны сохранять форму, кристаллической решётки у них нет. Некоторая закономерность наблюдается лишь для молекул и атомов, расположенных по соседству. Такой порядок называется ближним порядком . Он не повторяется по всем направлениям и не сохраняется на больших расстояниях, как у кристаллических тел.

Примеры аморфных тел - стекло, янтарь, искусственные смолы, воск, парафин, пластилин и др.

Особенности аморфных тел

Атомы в аморфных телах совершают колебания вокруг точек, которые расположены хаотично. Поэтому структура этих тел напоминает структуру жидкостей. Но частицы в них менее подвижны. Время их колебания вокруг положения равновесия больше, чем в жидкостях. Перескоки атомов в другое положение также происходят намного реже.

Как ведут себя при нагревании твёрдые кристаллические тела? Они начинают плавиться при определённой температуре плавления . И некоторое время одновременно находятся в твёрдом и жидком состоянии, пока не расплавится всё вещество.

У аморфных тел определённой температуры плавления нет . При нагревании они не плавятся, а постепенно размягчаются.

Положим кусок пластилина вблизи нагревательного прибора. Через какое-то время он станет мягким. Это происходит не мгновенно, а в течение некоторого интервала времени.

Так как свойства аморфных тел схожи со свойствами жидкостей, то их рассматривают как переохлаждённые жидкости с очень большой вязкостью (застывшие жидкости). При обычных условиях течь они не могут. Но при нагревании перескоки атомов в них происходят чаще, уменьшается вязкость, и аморфные тела постепенно размягчаются. Чем выше температура, тем меньше вязкость, и постепенно аморфное тело становится жидким.

Обычное стекло - твёрдое аморфное тело. Его получают, расплавляя оксид кремния, соду и известь. Нагрев смесь до 1400 о С, получают жидкую стекловидную массу. При охлаждении жидкое стекло не затвердевает, как кристаллические тела, а остаётся жидкостью, вязкость которой увеличивается, а текучесть уменьшается. При обычных условиях оно кажется нам твёрдым телом. Но на самом деле это жидкость, которая имеет огромную вязкость и текучесть, настолько малую, что она едва различается самыми сверхчувствительными приборами.

Аморфное состоянием вещества неустойчиво. Со временем из аморфного состояния оно постепенно переходит в кристаллическое. Этот процесс в разных веществах проходит с разной скоростью. Мы видим, как покрываются кристаллами сахара леденцы. Для этого нужно не очень много времени.

А для того чтобы кристаллы образовались в обычном стекле, времени должно пройти немало. При кристаллизации стекло теряет свою прочность, прозрачность, мутнеет, становится хрупким.

Изотропность аморфных тел

В кристаллических твёрдых телах физические свойства различаются в разных направлениях. А в аморфных телах они по всем направлениям одинаковы. Это явление называют изотропностью .

Аморфное тело одинаково проводит электричество и теплоту по всем направлениям, одинаково преломляет свет. Звук также одинаково распространяются в аморфных телах по всем направлениям.

Свойства аморфных веществ используются в современных технологиях. Особый интерес вызывают металлические сплавы, которые не имеют кристаллической структуры и относятся к твёрдым аморфным телам. Их называют металлическими стёклами . Их физические, механические, электрические и другие свойства отличаются от аналогичных свойств обычных металлов в лучшую сторону.

Так, в медицине используют аморфные сплавы, прочность которых превышает прочность титана. Из них делают винты или пластины, которыми соединяют сломанные кости. В отличие от титановых деталей крепления этот материал постепенно распадается и со временем заменяется костным материалом.

Применяют высокопрочные сплавы при изготовлении металлорежущих инструментов, арматуры, пружин, деталей механизмов.

В Японии разработан аморфный сплав, обладающий высокой магнитной проницаемостью. Применив его в сердечниках трансформаторов вместо текстурованных листов трансформаторной стали, можно снизить потери на вихревых токах в 20 раз.

Аморфные металлы обладают уникальными свойствами. Их называют материалом будущего.

Наряду с кристаллическими твердыми телами встречаются аморфные твердые тела. У аморфных тел в отличие от кристаллов нет строгого порядка в расположении атомов. Только ближайшие атомы - соседи - располагаются в некотором порядке. Но

строгой повторяемости во всех направлениях одною того же элемента структуры, которая характерна для кристаллов, в аморфных телах нет.

Часто одно и то же вещество может находиться как в кристаллическом, так и в аморфном состоянии. Например, кварц может быть как в кристаллической, так и в аморфной форме (кремнезем). Кристаллическую форму кварца схематически можно представить в виде решетки из правильных шестиугольников (рис. 77, а). Аморфная структура кварца также имеет вид решетки, но неправильной формы. Наряду с шестиугольниками в ней встречаются пяти- и семиугольники (рис. 77, б).

Свойства аморфных тел. Все аморфные тела изотропны: их физические свойства одинаковы по всем направлениям. К аморфным телам принадлежат стекло, многие пластмассы, смола, канифоль, сахарный леденец и др.

При внешних воздействиях аморфные тела обнаруживают одновременно упругие свойства, подобно твердым телам, и текучесть, подобно жидкостям. При кратковременных воздействиях (ударах) они ведут себя как твердое тело и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии аморфные тела текут. Так, например, кусок смолы постепенно растекается по твердой поверхности. Атомы или молекулы аморфных тел, подобно молекулам жидкости, имеют определенное время «оседлой жизни» время колебаний около положения равновесия. Но в отличие от жидкостей это время у них весьма велико. В этом отношении аморфные тела близки к кристаллическим, так как перескоки атомов из одного положения равновесия в другое происходят редко.

При низких температурах аморфные тела по своим свойствам напоминают твердые тела. Текучестью они почти не обладают, но по мере повышения температуры постепенно размягчаются и их свойства все более и более приближаются к свойствам жидкостей. Это происходит потому, что с ростом температуры постепенно учащаются перескоки атомов из одного положения

равновесия в другое. Никакой определенной температуры плавления у аморфных тел, в отличие от кристаллических, нет.

Физика твердого тела. Все свойства твердых тел (кристаллических и аморфных) могут быть объяснены на основе знания их атомно-молекулярной структуры и законов движения молекул, атомов, ионов и электронов, слагающих твердые тела. Исследования свойств твердых тел объединены в большой области современной физики - физики твердого тела. Развитие физики твердого тела стимулируется в основном потребностями техники. Приблизительно половина физиков мира работает в области физики твердого тела. Разумеется, достижения в этой области немыслимы без глубоких знаний всех остальных разделов физики.

1. Чем отличаются кристаллические тела от аморфных? 2. Что такое анизотропия? 3. Приведите примеры монокристаллических, поликристал-лических и аморфных тел. 4. Чем отличаются краевые дислокации от винтовых?

Аморфные твердые тела по многим своим свойствам и главным образом по микроструктуре следует рассматривать как сильно переохлажденные жидкости с очень высоким коэффициентом вязкости. Структура таких тел характеризуется только ближним порядком в расположении частиц. Некоторые из таких веществ вообще не способны кристаллизоваться: воск, сургуч, смолы. Другие при определённом режиме охлаждения образуют кристаллические структуры, но в случае быстрого охлаждения рост вязкость препятствует упорядочению в расположении частиц. Вещество затвердевает раньше, чем реализуется процесс кристаллизации. Такие тела называются стеклообразными: стекло, лёд. Процесс кристаллизации в таком веществе может произойти и после затвердевания (помутнение стёкол). К аморфным относят и твёрдые органические вещества: резина, дерево, кожа, пластмассы, шерстяные, хлопковые и шёлковые волокна. Процесс перехода таких веществ из жидкой фазы в твёрдую представлен на рис. – кривая I.

Аморфные тела не имеют температуры затвердевания (плавления). На графике Т = f(t) имеется точка перегиба, которую называют температурой размягчения. Снижение температуры приводит к постепенному росту вязкости. Такой характер перехода в твёрдое состояние, обуславливает отсутствие у аморфных веществ удельной теплоты плавления. Обратный переход, когда теплота подводится, происходит плавное размягчение до состояния жидкости.

КРИСТАЛЛИЧЕСКИЕ ТВЕРДЫЕ ТЕЛА.

Характерной особенностью микроструктуры кристаллов является пространственная периодичность их внутренних электрических полей и повторяемость в расположении кристаллообразующих частиц – атомов, ионов и молекул (дальний порядок). Частицы чередуются в определенном порядке вдоль прямых линий, которые называются узловыми. В любом плоском сечении кристалла две пересекающихся системы таких линий образуют совокупность совершенно одинаковых параллелограммов, которые плотно, без зазоров покрывают плоскость сечения. В пространстве пересечение трех некомпланарных систем таких линий образует пространственную сетку, которая разбивает кристалл на совокупность совершенно одинаковых параллелепипедов. Точки пересечения линий, образующих кристаллическую решетку называются узлами. Расстояния между узлами вдоль какого-то направления называется трансляциями или периодами решетки. Параллелепипед, построенный на трех некомпланарных трансляциях называется элементарной ячейкой или параллелепипедом повторяемости решетки. Важнейшим геометрическим свойством кристаллических решеток является симметрия в расположении частиц по отношению к определенным направлениям и плоскостям. По этой причине, хотя и существует несколько способов выбора элементарной ячейки, для данной кристаллической структуры, выбирают ее так, чтобы она соответствовала симметрии решетки.

Кристаллические тела можно разделить на две группы: монокристаллы и поликристаллы. Для монокристаллов наблюдается единая кристаллическая решетка в объеме всего тела. И хотя внешняя форма монокристаллов одного вида может быть разной, углы между соответствующими гранями будут всегда одинаковыми. Характерной особенностью монокристаллов является анизотропия механических, тепловых, электрических, оптических и др. свойств.

Монокристаллы нередко встречаются в естественном состоянии в природе. Например, большинство минералов – хрусталь, изумруды, рубины. В настоящее время в производственных целях многие монокристаллы выращивают искусственно из растворов и расплавов - рубины, германий, кремний, арсенид галия.

Один и тот же химический элемент может образовать несколько, отличающихся по геометрии, кристаллических структур. Это явление получило название - полиморфизма. Например, углерод – графит и алмаз; лед пять модификаций и др.

Правильная внешняя огранка и анизотропия свойств, как правило, не проявляются для кристаллических тел. Это объясняется тем, что кристаллические твердые тела обычно состоят из множества беспорядочно ориентированных мелких кристалликов. Такие твердые тела называются поликристаллическими. Связано это с механизмом кристаллизации: при достижении необходимых для этого процесса условий, очаги кристаллизации одновременно возникают во множестве мест исходной фазы. Зародившиеся кристаллы расположены и ориентированы друг по отношению к другу совершенно произвольно. По этой причине по окончании процесса мы получаем твердое тело в виде конгломерата сросшихся мелких кристалликов – кристаллитов.

С энергетической точки зрения различие между кристаллическими и аморфными твердыми телами хорошо прослеживаются в процессе отвердевания и плавления. Кристаллические тела имеют точку плавления – температуру, когда вещество устойчиво существует в двух фазах – твёрдой и жидкой (рис. кривая 2). Переход молекулы твердого тела в жидкость означает, что она приобретает дополнительно три степени свободы поступательного движения. Т.о. единица массы вещества при Т пл. в жидкой фазе имеет большую внутреннюю энергию, чем такая же масса в твердой фазе. Кроме того, меняется расстояние между частицами. Поэтому в целом количество теплоты необходимое для превращения единицы массы кристаллического вещества в жидкость будет:

λ = (U ж -U кр) + P (V ж -V кр),

где λ – удельная теплота плавления (кристаллизации), (U ж -U кр) – разность внутренних энергий жидкой и кристаллической фаз, Р – внешнее давление, (V ж -V кр) – разность удельных объемов. Согласно уравнению Клапейрона - Клаузиуса температура плавления зависит от давления:

Видно, что если (V ж -V кр)> 0, то > 0, т.е. с ростом давления температура плавления повышается. Если же объем вещества при плавлении уменьшается (V ж -V кр)< 0 (вода, висмут), то рост давления приводит к понижению Т пл.

У аморфных тел теплота плавления отсутствует. Нагревание приводит к постепенному увеличению скорости теплового движения и уменьшению вязкости. На графике процесса имеется точка перегиба (рис.), которую условно называют температурой размягчения.

ТЕПЛОВЫЕ СВОЙСТВА ТВЕРДЫХ ТЕЛ

Тепловое движение в кристаллах из-за сильного взаимодействия ограничивается только колебаниями частиц около узлов кристаллической решетки. Амплитуда этих колебаний обычно не превращает 10 -11 м, т.е. составляет всего 5-7% периода решетки вдоль соответствующего направления. Характер этих колебаний весьма непрост, так как определяется силами взаимодействия колеблющейся частицы со всеми своими соседями.

Рост температуры означает увеличение энергии движения частиц. Это в свою очередь, означает увеличение амплитуды колебаний частиц и объясняет расширение кристаллических твердых тел при нагревании.

l t = l 0 (1 + αt 0),

где l t иl 0 – линейные размеры тела при температурахt 0 и 0 0 С, α – коэффици-ент линейного расширения. Для твёрдых тел α имеет порядок 10 -5 – 10 -6 К -1 . В результате линейного расширения увеличивается и объём тела:

V t = V 0 (1 + βt 0),

здесь β – коэффициент объёмного расширения. β = 3α в случае изотропного расширения. Монокристаллические тела, будучи анизотропными, имеют три разных значения α.

Каждая частица, совершающая колебания, имеет три степени свободы колебательного движения. Учитывая, что, кроме кинетической, частицы обладают еще и потенциальной энергией, на одну степень свободы частиц твёрдых тел следует приписать энергию ε = кТ. Теперь для внутренней энергии моля будем иметь:

U μ = 3N A kT = 3RT,

а для молярной теплоемкости:

Т.е. молярная теплоемкость химически простых кристаллических тел одинакова и не зависит от температуры. Это закон Дюлонга-Пти.

Как показал эксперимент, этот закон достаточно хорошо выполняется, начиная с комнатных температур. Объяснения отклонениям от закона Дюлонга-Пти при низких температурах были даны Эйнштейном и Дебаем в квантовой теории теплоемкости. Было показано, что энергия, которая приходится на одну степень свободы не является постоянной величиной, а зависит от температуры и частоты колебаний.

РЕАЛЬНЫЕ КРИСТАЛЛЫ. ДЕФФЕКТЫ В КРИСТАЛАХ

Реальные кристаллы обладают рядом нарушений идеальной структуры, которые называются дефектами кристаллов:

а) точечные дефекты –

    дефекты Шотки (незанятые частицами узлы);

    дефекты Френкеля (смещение частиц из узлов в междуузлия);

    примеси (внедренные чужеродные атомы);

б) линейные – краевые и винтовые дислокации. Это локальные нерегулярно

сти в расположения частиц

    из-за недостроенности отдельных атомных плоскостей

    или из-за нарушений в последовательности их застройки;

в) плоскостные – границы между кристаллитами, ряды линейных дислокаций.

Аморфные тела

Амо́рфные вещества́ (тела́) (от др.-греч. «не-» и μορφή «вид, форма») - конденсированное состояние вещества, атомарная структура которых имеет ближний порядок и не имеет дальнего порядка , характерного для кристаллических структур . В отличие от кристаллов стабильно-аморфные вещества не затвердевают с образованием кристаллических граней, и, (если не были под сильнейшим анизотропным воздействием - сжатием или электрическим полем , например) обладают изотропией свойств, то есть не обнаруживают различных свойств в разных направлениях. И не имеют определённой точки плавления : при повышении температуры стабильно-аморфные вещества постепенно размягчаются и выше температуры стеклования (T g) переходят в жидкое состояние . Вещества с высокой скоростью кристаллизации, обычно имеющие (поли-)кристаллических структуру , но сильно переохлаждённые при затвердевании в аморфное состояние, при последующем нагреве незадолго до плавления рекристаллизуются (в твёрдом состоянии с небольшим выделением тепла), а затем плавятся как обычные поликристаллические.

Получаются при высокой скорости затвердевания(остывания) жидкого расплава или конденсацией паров на охлаждённую заметно ниже температуры ПЛАВЛЕНИЯ(не кипения!) подложку (любой предмет). Соотношение реальной скорости охлаждения (dT/dt) и характеристической скорости кристаллизации определяет долю поликристаллов в аморфном объёме. Скорость кристаллизации - параметр вещества, слабо зависящий от давления и от температуры (около точки плавления - сильно). И сильно зависящий от сложности состава - для металлов порядка долей-десятков миллисекунд; а для стёкол при комнатной температуре - сотни и тысячи лет (старые стёкла и зеркала мутнеют).

Электрические и механические свойства аморфных веществ ближе к таковым для монокристаллов, чем для поликристаллов из-за отсутствия резких и сильно загрязнённых примесями межкристаллических переходов(границ) с зачастую абсолютно другим химическим составом.

Немеханические свойства полуаморфных состояний обычно являются промежуточными между аморфным и кристаллическим и изотропны . Однако отсутствие резких межкристаллических переходов заметно влияет на электрические и механические свойства, делая их похожими на аморфные.

При внешних воздействиях аморфные вещества обнаруживают одновременно упругие свойства, подобно кристаллическим твердым веществам, и текучесть , подобно жидкости. Так, при кратковременных воздействиях (ударах) они ведут себя как твёрдые вещества и при сильном ударе раскалываются на куски. Но при очень продолжительном воздействии (например растяжении) аморфные вещества текут. Например, аморфным веществом также является смола (или гудрон , битум). Если раздробить её на мелкие части и получившейся массой заполнить сосуд, то через некоторое время смола сольётся в единое целое и примет форму сосуда.

В зависимости от электрических свойств, разделяют аморфные металлы , аморфные неметаллы, и аморфные полупроводники.

См. также

(устаревший термин)

Wikimedia Foundation . 2010 .

Смотреть что такое "Аморфные тела" в других словарях:

    Все, что признается реально существующим и занимающим часть пространства, носит название физического Т. Всякое физическое Т. образовано из вещества (см. Вещество) и представляет собой, согласно наиболее распространенному учению, совокупность… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Физика твёрдого тела раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомарного строения. Интенсивно развивалась в XX веке после открытия квантовой механики.… … Википедия

    Химия органического твердого тела (англ. organic sold state chemistry) – раздел химии твердого тела, изучающий всевозможные химические и физико химические аспекты органических твердых тел (ОТТ), в частности, – их синтез, строение, свойства,… … Википедия

    Физика кристаллов Кристалл кристаллография Кристаллическая решётка Типы кристаллических решёток Дифракция в кристаллах Обратная решётка Ячейка Вигнера Зейтца Зона Бриллюэна Структурный фактор базиса Атомный фактор рассеяния Типы связей в… … Википедия

    Раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… … Энциклопедия Кольера

    - (химия твердого состояния), раздел физ. химии, изучающий строение, св ва и методы получения твердых в в. X. т. т. связана с физикой твердого тела, кристаллографией, минералогией, физ. хим. механикой, механохимией, радиационной химией, является… … Химическая энциклопедия

    Химия твёрдого тела раздел химии, изучающий разные аспекты твердофазных веществ, в частности, их синтез, структуру, свойства, применение и др.. Ее объектами исследования являются кристаллические и аморфные, неорганические и органические… … Википедия

    - (ИФТТ РАН) Международное название Institute of Solid State Physics, RAS Основан 1963 Директор чл. к. В. … Википедия

    Институт физики твёрдого тела РАН (ИФТТ РАН) Международное название Institute of Solid State Physics, RAS Основан 15 февраля 1963 Директор чл. корр. РАН В.В. Кведер … Википедия