Открытие рибосом и митохондрий метод. Митохондрия. Расположение в клетке и деление

Прописка

Маргоулиц, Кайер и Кларес – первыми предположили Эндосимбиотическую теорию, а Лиин продолжил ее.

Наибольшее распространение получила гипотеза об эндосимбиотическом происхождении митохондрий, в соответствии с которой современные митохондрии животных берут свое начало от альфа-протеобактерий (к которым принадлежит современная Rickettsia prowazekii), внедрившихся в цитозоль клеток-предшественников. Считается, что за время эндосимбиоза бактерии передали большую часть своих жизненно важных генов хромосомам клетки-хозяина, сохранив в своем геноме (в случае клеток человека) информацию лишь о 13 полипептидах, 22 тРНК и двух рРНК. Все полипептиды входят в состав ферментативных комплексов системы окислительного фосфорилирования митохондрий.

митохондрии образуются за счет эндоцитоза древней крупной анаэробной прокариоты, которая поглотила более мелкую аэробную прокариоту. Отношение таких клеток сначала были симбиотические, а затем крупная клетка стала контролировать процессы, происходящие в митохондрии.

Доказательства:

Разница в строении внутренней и наружной мембраны митохондрий

Наличие в митохондриях собственной кольцевой ДНК (как у бактерий), которая содержит гены для определенных митохондриальных белков

Наличие в мембране собственного белок-синтезирующего аппарата, причем рибосомы в нем прокариотного типа

Деление митохондрий происходит простым бинарным путем, либо почкованием и не зависит от деления клетки.

Несмотря на определенную независимость митохондрии, находятся под контролем эукариотной клетки. Например, в гиалоплазме синтезируется некоторые белки, необходимые для нормального функционирования митохродний, и некоторых белковых факторов, которые регулируют деление митохондрий.

ДНК митохондрий и пластид, в отличие от ДНК большинства прокариот, содержат интроны.

В собственной ДНК митохондрий и хлоропластов закодирована только часть их белков, а остальные закодированы в ДНК ядра клетки. В ходе эволюции происходило «перетекание» части генетического материала из генома митохондрий и хлоропластов в ядерный геном. Этим объясняется тот факт, что ни хлоропласты, ни митохондрии не могут более существовать (размножаться) независимо.

Не решён вопрос о происхождении ядерно-цитоплазматического компонента (ЯЦК), захватившего прото-митохондрии. Ни бактерии, ни археи не способны к фагоцитозу, питаясь исключительно осмотрофно. Молекулярно-биологические и биохимические исследования указывают на химерную архейно-бактериальную сущность ЯЦК. Как произошло слияние организмов из двух доменов, также не ясно.

Теорию эндосимбиотического происхождения хлоропластов впервые предложил в 1883 году Андреас Шимпер, показавший их саморепликацию внутри клетки. Фаминцин в 1907 году, опираясь на работы Шимпера, также пришёл к выводу, что хлоропласты являются симбионтами, как и водоросли в составе лишайников.

В 1920-е годы теория была развита Б. М. Козо-Полянским, было высказано предположение, что симбионтами являются и митохондрии

Клеточное ядро, нуклеоцитоплазма

Смешение у эукариот многих свойств, характерных для архей и бактерий, позволило предположить симбиотическое происхождение ядра от метаногенной архебактерии, внедрившейся в клетку миксобактерии. Гистоны, к примеру, обнаружены у эукариот и некоторых архей, кодирующие их гены весьма схожи. Другая гипотеза, объясняющая сочетание у эукариот молекулярных признаков архей и эубактерий, состоит в том, что на некотором этапе эволюции похожие на архей предки нуклеоцитоплазматического компонента эукариот приобрели способность к усиленному обмену генами с эубактериями путём горизонтального переноса генов

В последнее десятилетие сформировалась также гипотеза вирусного эукариогенеза (англ. viral eukaryogenesis). В её основании лежит ряд сходств устройства генетического аппарата эукариот и вирусов: линейное строение ДНК, её тесное взаимодействие с белками и др. Было показано сходство ДНК-полимеразы эукариот и поксивирусов, что сделало именно их предков основными кандидатами на роль ядра.

Жгутики и реснички

Линн Маргулис предположила в том числе происхождение жгутиков и ресничек от симбиотических спирохет. Несмотря на сходство размеров и строения указанных органелл и бактерий и существование Mixotricha paradoxa, использующей спирохет для движения, в жгутиках не было найдено никаких специфически спирохетных белков. Однако известен общий для всех бактерий и архей белок FtsZ, гомологичный тубулину и, возможно, являющийся его предшественником. Жгутики и реснички не обладают такими признаками бактериальных клеток, как замкнутая наружная мембрана, собственный белоксинтезирующий аппарат и способность к делению. Данные о наличии ДНК в базальных тельцах, появившиеся в 1990-е годы, были впоследствии опровергнуты. Увеличение числа базальных телец и гомологичных им центриолей происходит не путём деления, а путём достраивания нового органоида рядом со старым.

Пероксисомы

Кристиан де Дюв обнаружил пероксисомы в 1965 году. Ему же принадлежит предположение, что пероксисомы были первыми эндосимбионтами эукариотической клетки, позволившими ей выживать при нарастающем количестве свободного молекулярного кислорода в земной атмосфере. Пероксисомы, однако, в отличие от митохондрий и пластид, не имеют ни генетического материала, ни аппарата для синтеза белка. Было показано, что эти органеллы формируются в клетке de novo в ЭПР и нет никаких оснований считать их эндосимбионтами

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана . Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин - белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство . Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана . Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO 2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений. В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление . Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементы Строение Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов


Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Две международные команды ученых исследовали структуру митохондриальных рибосом с помощью криоэлектронной микроскопии. Этот метод позволяет увидеть структурные элементы с высочайшим разрешением. Новые сведения дали возможность сравнить детали строения цитоплазматических и митохондриальных рибосом. Как выяснилось, митохондриальные рибосомы высокоспециализированы и сильно отличаются и от цитоплазматических аналогов, и от бактериальных рибосом.

Хорошо известно, что митохондрии - это бывшие альфа-протеобактерии , которые примерно полтора миллиарда лет назад стали симбионтами клеток архей или каких-то иных клеток. Там они взяли на себя функцию энергетических снабженцев, усовершенствовав биохимический конвейер по производству АТФ - главной энергетической молекулы клетки. Зато другие функции жизнеобеспечения за них стала выполнять хозяйская клетка со своим ядром и регуляторами. Об оставленной свободной жизни в митохондриях напоминает присутствие мембран, собственной ДНК и рибосом, необходимых для изготовления небольшого набора митохондриальных белков. Все эти элементы высоко специализированы, так как нацелены, в отличие от всех остальных частей клетки, на выполнение только двух функций - производства АТФ и собственного размножения в стабильных внутриклеточных условиях. Поэтому изучение любого из этих элементов дает представление о процессах эволюционной специализации. Это касается в том числе и рибосом , хотя, казалось бы, эта клеточная машинка для синтеза белков универсальна, в ее работе уже ничего не убавить и не прибавить. Но оказалось, что это не так: митохондриальные рибосомы отличаются и от клеточных соседей, и от предковых рибосом альфа-протеобактерий. Это выяснили специалисты из в Цюрихе и Цюрихского университета . Также интересную работу на эту тему выполнили ученые из лаборатории молекулярной биологии Совета медицинских исследований в Кембридже.

Эти группы использовали криоэлектронную микроскопию (Cryo-electron microscopy), позволяющую реконструировать трехмерное изображение объектов с разрешением 3,4–3,8 ангстрем. При подготовке препаратов для криоэлектронной микроскопии не используются вспомогательные материалы для срезов, изменяющие структуру мелких клеточных включений. До сих пор, однако, разрешающая способность криоэлектронной микроскопии была не очень высока, и только теперь она усовершенствовалась до уровня высокоточной рентгеновской кристаллографии (которая позволяет устанавливать атомарную структуру вещества, см.: X-ray crystallography). С помощью этой техники оказалось возможным рассмотреть в подробностях различные субъединицы миторибосом (митохондриальных рибосом), соотнести биохимические и структурные различия с таковыми цитоплазматических рибосом.

Рибосомы - это комплексы белков и РНК, белки в рибосомах в основном являются рибозимами , что указывает на их подчиненную каталитическую роль в этом тандеме. В миторибосомах у млекопитающих (были изучены человеческие и свиные клетки) содержится меньше РНК и, соответственно, больше белков. В некоторых случаях белки заменяют потерянные части РНК, они покрывают практически всю рибосому, вероятно чтобы стабилизировать неустойчивую структуру РНК и защитить комплексы от окисления. Около половины миторибосомных белков специфичны: таких нет ни в цитоплазматических рибосомах, ни у родственных бактериальных рибосом. Так, у человека имеется 80 миторибосомных белков, из которых 36 специфичны. Одно из любопытных структурных различий, как выяснилось, такое: важный функциональный элемент рибосомы - малая субъединица 5S рРНК (5S ribosomal RNA) - замещена в митохондриях на тРНК валина. Эта замена особенно важна в свете дискуссий о природе 5S рРНК (см.: Г. М. Гонгадзе, 2011. 5S рРНК и рибосома), ее подозрительном сходстве с тРНК и возможном происхождении одной молекулы от другой (причем пока не ясно, какая именно от какой произошла).

Как сказались эти трансформации на работе миторибосом? Ученые предполагают, что именно они позволили миторибосомам стать специалистами по производству гидрофобных белков; и даже более - локализовать это производство на мембранах митохондрий. Нашлись специальные комплексы, которые прикрепляют рибосомы к мембранам митохондрий; нашлись особые белки, которые обеспечивают специфическую элонгацию; нашлись белки, которые занимаются распознаванием и прикреплением мРНК к миторибосоме. Все они различаются с функциональными аналогами цитоплазаматических рибосом. В особенности это касается инициации связывания мРНК с рибосомой - последней из перечисленных функций. То место, куда между двумя субъединицами входит нить матричной РНК, устроено у миторибосомы совершенно не так, как в цитоплазматической рибосоме. Именно из-за ее специфики ученые не могли наладить синтез митохондриальных белков in vitro, хотя цитоплазматические рибосомы работают в искусственных условиях уже более полувека. Теперь можно начать экспериментировать и с митохондриальными рибосомами.

Особенности миторибосомальных белков обуславливают иное устройство взаимодействия между малой и большой субъединицами. Из-за этого меняются конформационные движения и повороты этих субъединиц при связывании с тРНК и продвижении мРНК и синтезирующейся аминокислотной цепочки. Иными словами, механика работы миторибосомы при синтезе белковой нити отличается от канонической цитоплазматической рибосомы.

Обе команды исследователей подчеркивают, что обнаруженная специфика миторибосом объясняет побочные действия нескольких классов лекарств. Это означает, что структуру новых лекарств нужно немного изменить, чтобы устранить вредные последствия. Теперь стало понятно, куда смотреть и что менять. Хотя бы поэтому данная работа с миторибосомами актуальна. Хотя теоретический интерес специфики миторибосом гораздо шире: ведь известно, что миторибосомы сильно различаются у разных видов, гораздо сильнее, чем цитоплазматические рибосомы. Траектории изменений у разных видов покажут особенности энергетического обмена и пути его приспособления к разным модификациям.

Источники:
1) A. Amunts, A. Brown, J. Toots, S. H. W. Scheres, V. Ramakrishnan. The structure of the human mitochondrial ribosome // Science . 2015. V. 348. P. 95–98.
2) A. Amunts, A. Brown, X. Bai, J. L. Llácer, T. Hussain, P. Emsley, F. Long, G. Murshudov, S. H. W. Scheres, V. Ramakrishnan. Structure of the Yeast Mitochondrial Large Ribosomal Subunit // Science . 2014. V. 343. P. 1485–1489.
3) B. J. Greber, P. Bieri, M. Leibundgut, A. Leitner, R. Aebersold, D. Boehringer, N. Ban. The complete structure of the 55S mammalian mitochondrial ribosome // Science . 2015. V. 348. P. 303–307.
4) R. Beckmann, J. M. Herrmann. Mitoribosome Oddities // Science . 2015. V. 348. P. 288–289.

Елена Наймарк

Митохондрии являются органоидами всех эукариотических клеток. Они характеризуются обилием внутренних мембран. Две мембраны - внешняя и внутренняя - отделяют их от цитоплазмы. Мембраны образуют в митохондриях большие внутренние компартменты, в которых происходят реакции окислительного фосфорилирования. В результате этих процессов энергия реакций окисления преобразуется в энергию, заключенную в молекулах АТФ. При этом митохондрии исключительно эффективно используют для окисления сахара и жирные кислоты.

Митохондрии (греч. mitos-нить, chondros-зерно) занимают в эукариотических клетках значительную часть цитоплазмы. Подсчеты показывают, что на одну печеночную клетку приходится около тысячи митохондрий. Это примерно 20% общего объема цитоплазмы и около 30-35% общего количества белка в клетке. В ооцитах насчитывается до 300000 митохондрий, в гигантских амебах до 500000. В клетках зеленых растений митохондрий меньше, чем в клетках животных.

Митохондрии были описаны еще в конце прошлого века, так как их размеры довольно велики, то они сопоставимы с размерами бактериальной клетки, и хорошо различимы с помощью светового микроскопа. В типичном случае митохондрии представляют собой цилиндр диаметром 0,5 мкм и длиной до 1 мкм. Однако у разных организмов длина митохондрий колеблется в значительных пределах от 7 до 10 мкм. В клетках дрожжей, клетках мышечной ткани, у трипаносом присутствуют разветвленные паукообразные митохондрии. Они обладают достаточно высокой плотностью, благодаря чему их можно наблюдать в живых клетках. Такие наблюдения с помощью микрокиносьемки показывают, что форма митохондрий в живых клетках весьма изменчива, это необыкновенно подвижные и пластичные органоиды. В течение минуты они могут изменить свою цилиндрическую форму 15-20 раз, принимая вид пузырьков, гантелей, теннисной ракетки, они могут изгибаться и выпрямляться.

Локализация митохондрий в клетках определяется двумя факторами. Во-первых, она зависит от расположения других органоидов и включений. В растительных дифференцированных клетках митохондрии отодвигаются к периферии клетки центральной вакуолью, в клетках меристемы они располагаются более-менее равномерно. В делящихся клетках митохондрии располагаются также периферически, их вытесняет веретено деления. Ориентацию митохондрий могут определять микротрубочки цитоплазмы. Во-вторых, митохондрии скапливаются в энергозависимых участках клетки. В скелетных мышцах - между миофибрилл, в сперматозоидах плотно обвивают жгутик, у простейших, снабженных ресничками, митохондрии лежат у основания ресночек под плазматической мембраной. В нервных клетках - около синапсов, где происходит передача нервных импульсов. В секреторных клетках митохондрии связаны с зонами шероховатой ЭПС.

Реальная возможность понять тонкое строение митохондрий и их функций появилась только после 1948 г., когда были разработаны методы выделения митохондрий из клеток и началось их биохимическое исследование. Каждая митохондрия окружена двумя высокоспециализированными мембранами, играющими основную роль в ее работе. Эти мембраны образуют два изолированных митохондриальных компартмента - межмембранное пространство и внутренний матрикс. Внутренняя мембрана образует многочисленные кристы, увеличивающие ее общую поверхность.

Матрикс содержит высококонцентрированную смесь сотен различных ферментов, необходимых для окисления пирувата, жирных кислот, и ферментов цикла лимонной кислоты. 67% всего белка митохондрий приходится на матрикс. В матриксе содержится собственная ДНК, представленная несколькими идентичными молекулами и близка к бактериальной по составу нуклеотидов, кроме того она тоже кольцевая как у бактерий. Матрикс митохондрий включает и специфические митохондриальные рибосомы. По своим свойствам они также близки к бактериальным (70S).

Присутствие ДНК, рибосом и ферментов, участвующих в работе митохондриального генома, говорит о некоторой автономности митохондрий.

В митохондриях происходит синтез АТФ на основе окисления органических субстратов и фосфорилирования АДФ. Высвобождение энергии при аэробном окислении пищи называется дыханием.

Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.

Количество митохондрий в клетках не постоянно, в среднем от нескольких единиц до нескольких тысяч. Там, где процессы синтеза идут интенсивно, их больше. Также варьирует размер митохондрий и их форма (округлые, вытянутые, спиральные, чашевидные и др.). Чаще имеют округлую вытянутую форму, диаметром до 1 микрометра и длиной до 10 мкм. Могут перемещаться в клетке с током цитоплазмы или оставаться в одном положении. Перемещаются к местам, где больше всего требуется выработка энергии.

Следует иметь в виду, что в клетках АТФ синтезируется не только в митохондриях, но и в цитоплазме в процессе гликолиза . Однако эффективность этих реакций невысока. Особенность функции митохондрий в том, что в них протекают реакции не только бескислородного окисления, но и кислородный этап энергетического обмена.

Другими словами, функция митохондрий – активное участие в клеточном дыхании, к которому относят множество реакций окисления органических веществ, переноса протонов водорода и электронов, идущих с выделением энергии, которая аккумулируется в АТФ.

Ферменты митохондрий

Ферменты транслоказы внутренней мембраны митохондрий осуществляют активный транспорт АДФ и АТФ.

В структуре крист выделяют элементарные частицы, состоящие из головки, ножки и основания. На головках, состоящих из фермента АТФазы , происходит синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи.

Компоненты дыхательной цепи находятся в основании элементарных частиц в толще мембраны.

В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот.

В результате активности электротранспортной дыхательной цепи ионы водорода поступают в нее из матрикса, а высвобождаются на наружной стороне внутренней мембраны. Это осуществляют определенные мембранные ферменты. Разница в концентрации ионов водорода по разные стороны мембраны приводит к возникновению градиента pH.

Энергию для поддержания градиента поставляет перенос электронов по дыхательной цепи. Иначе ионы водорода диффундировали бы обратно.

Энергия градиента pH используется для синтеза АТФ из АДФ:

АДФ + Ф = АТФ + H 2 O (реакция обратима)

Образующаяся вода ферментативно удаляется. Это, наряду с другими факторами, облегчает протекание реакции слева направо.