Построение графика линейного уравнения с двумя переменными. Видеоурок «Линейное уравнение с двумя переменными и его график

Оформление документов

Вы знаете, что каждой упорядоченной паре чисел соответствует определенная точка на координатной плоскости. Поскольку каждое решение уравнения с двумя переменными х и у - это упорядоченная пара чисел, то все его решения можно изобразить точками па координатной плоскости. В этих точек абсцисса - это значение переменной х, а ордината - соответствующее значение переменной у. Следовательно, получим график уравнения с двумя переменными.

Запомните!

Графиком уравнения с двумя переменными называется изображение на координатной плоскости всех точек, координаты которых удовлетворяют данное уравнение.

Посмотрите на рисунки 64 и 65. Вы видите график уравнения 0,5 x - у = 2, где х - четное одноцифрове число (рис. 64), и график уравнения х 2 + у 2 = 4 (рис. 65). Первый график содержит всего четыре точки, поскольку переменные х и у могут принимать только четыре значения. Второй же график является линией на координатной плоскости. Он содержит множество точек, поскольку переменная х может принимать любые значения от -2 до 2 и таких чисел - множество. Соответствующих значений в тоже множество. Они изменяются от 2 до 2.

На рисунке 66 показан график уравнения х + у = 4. В отличие от графика уравнения х 2 + у 2 = 4 (см. рис. 65), каждой абсцисі точек данного графика соответствует единственная ордината. А это означает, что на рисунке 66 изображен график функции. Убедитесь самостоятельно, что график уравнения на рисунке 64 также является графиком функции.

Обратите внимание

не у каждого уравнение его график является графиком функции, однако каждый график функции является графиком некоторого уравнения.

Уравнение x + y = 4 является линейным уравнением с двумя переменными. Решив его относительно у, получим: у = -х + 4. Полученное равенство можно понимать как формулу, которая задает линейную функцию у = -х + 4. Графиком такой функции является прямая. Итак, графиком линейного уравнения х + у = 4, который изображен на рисунке 66, есть прямая.

Можно ли утверждать, что график любого линейного уравнения с двумя переменными является прямой? Нет. Например, линейное уравнение 0 ∙ х + 0 ∙ у = 0 удовлетворяет любая пара чисел, а потому график этого уравнения содержит все точки координатной плоскости.

Выясним, что является графиком линейного уравнения с двумя переменными ах + bу + с = 0 в зависимости от значений коэффициентов а, b и с. Возможны такие случаи.

Пусть a ≠ 0, b ≠ 0, с ≠ 0. Тогда уравнение ах + by + с = 0 можно представить в виде:

Получили равенство, задающее линейную функцию у(х). Ее графику, а значит, и графиком данного уравнения является прямая, не проходящая через начало координат (рис. 67).

2. Пусть а ≠ 0, b ≠ 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + by + 0 = 0, или у = х.

Получили равенство, что задает прямую пропорциональность у(х). Ее графику, а значит, и графиком данного уравнения является прямая, проходящая через начало координат (рис. 68).

3. Пусть a ≠ 0, b = 0, с ≠ 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + 0 ∙ у + с = 0, или х = -.

Получили равенство не задает функцию y(). Это равенство удовлетворяют такие пары чисел (х; у), в которых х = , а у - любое число. На координатной плоскости эти точки лежат на прямой, параллельной оси OY. Итак, графиком данного уравнения является прямая, параллельная оси ординат (рис. 69).

4. Пусть a ≠ 0, b = 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид ах + 0 ∙ у + 0 = 0, или х = 0.

Это равенство удовлетворяют такие пары чисел (x; у), в которых х = 0, а у - любое число. На координатной плоскости эти точки лежат на оси OY. Итак, графиком данного уравнения с прямая, совпадающая с осью ординат.

5. Пусть а ≠ 0, b ≠ 0, с ≠0. Тогда уравнение ах + bу + с = 0 приобретает вид 0 ∙ х + by + с = 0, или у = -. Это равенство задает функцию y(x), что приобретает тех же значений для любых значений x, то есть является постоянной. Ее графику, а значит, и графиком данного уравнения является прямая, параллельная оси абсцисс (рис. 70).

6. Пусть а = 0, b ≠ 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + by + 0 = 0, или в = 0. Получили постоянную функцию у(х), в которой каждая точка графика лежит на оси ОХ. Итак, графиком данного уравнения является прямая, совпадающая с осью абсцисс.

7. Пусть a = 0, b = 0, с ≠ 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + 0 ∙ у + с = 0, или 0 ∙ х + 0 ∙ в = с. А такое линейное уравнение не имеет решений, поэтому его график не содержит ни одной точки координатной плоскости.

8. Пусть а = 0, b = 0, с = 0. Тогда уравнение ах + by + с = 0 приобретает вид 0 ∙ х + 0 ∙ y + 0 = 0, или 0 ∙ х + 0 ∙ у = 0. А такое линейное уравнение имеет множество решений, поэтому его с графиком-вся координатная плоскость.

Можем подытожить полученные результаты.

График линейного уравнения с двумя переменными ах + bу +с = 0:

Является прямой, если а ≠ 0 или b ≠ 0;

Является всей плоскостью, если а = 0, b = 0 и с = 0;

Не содержит ни одной точки координатной плоскости, если а = 0, b = 0 и с ≠ 0.

Задача. Постройте график уравнения 2х - у - 3 = 0

Решения. Уравнения 2х - у - 3 = 0 является линейным. Поэтому его графиком является прямая у = 2х - 3. Для ее построения достаточно задать две точки, принадлежащие этой прямой. Составим таблицу значений у для двух произвольных значений х, например, для х = 0 и х = 2(табл. 27).

Таблица 27

На координатной плоскости обозначим точки с координатами (0; -3) и (2; 1) и проведем через них прямую (рис. 70). Эта прямая - искомый график уравнения 2х - у - 3 = 0.

Можно ли отождествлять график линейного уравнения с двумя переменными и график уравнения первой степени с двумя переменными? Нет, поскольку существуют линейные уравнения не являются уравнениями первой степени. Например, таковыми являются уравнение 0 ∙ х + 0 ∙ у + с = 0, 0 ∙ х + 0 ∙ у + 0 = 0.

Обратите внимание:

График линейного уравнения с двумя переменными может быть прямой, всей плоскостью или не содержать ни одной точки координатной плоскости;

График уравнения первой степени с двумя переменными всегда является прямой.

Узнайте больше

1. Пусть а ≠ 0. Тогда общее решение уравнения можно представить еще и в таком виде: Х = - у -. Получили линейную функцию х(у). Ее графиком является прямая. Для построения такого графика надо по-другому состковать оси координат: первой координатной осью (независимой переменной) считать ось ОУ, а второй (зависимой переменной)

Ось ОХ. Тогда ось ОУ удобно расположить горизонтально, а ось ОХ

Вертикально (рис. 72). График уравнения в этом случае тоже будет по-разному размещаться на координатной плоскости в зависимости отмечаний коэффициентов b и с. Исследуйте это самостоятельно.

2. Николай Николаевич Боголюбов (1909-1992) - выдающийся отечественный математик и механик, физик-теоретик, основатель научных школ по нелинейной механике и теоретической физике, академик АН УССР (1948) и АН СССР (с 1953). Родился в г. Нижний Новгород Российской империи. В 1921 г. семья переехала в Киев. После окончания семилетней школы Боголюбов самостоятельно изучал физику и математику и с 14-ти лет уже принимал участие в семинаре кафедры математической физики Киевского университета под руководством академика Д. А. Граве. В 1924 г. в 15-летнем возрасте Боголюбов написал первую научную работу, а в следующем году был принят в аспирантуру АНУРСР к академикам. М. Крылова, которую закончил в 1929 г., получив в 20 лет степень доктора математических наук.

В 1929 p. М.М. Боголюбов стал научным сотрудником Украинской академии наук, в 1934 начал преподавать в Киевском университете (с 1936 г. - профессор). С конца 40-х годов XX века. одновременно работал в России. Был директором Объединенного института ядерных исследований, а впоследствии - директором Математического института имени. А. Стеклова в Москве, преподавал в Московском государственном университете имени Михаила Ломоносова. В 1966 г. стал первым директором созданного им Института теоретической физики АН УССР в Киеве, одновременно (1963-1988) он - академик - секретарь Отдела математики АН СССР.

М.М. Боголюбов -дважды Герой Социалистического Труда (1969,1979), награжден Ленинской премией (1958), Государственной премией СССР (1947.1953,1984), Золотой медалью им. М. В. Ломоносова АН СССР (1985).

21 сентября 2009 г. на фасаде Красного корпуса Киевского национального университета имени Тараса Шевченко была открыта мемориальная доска гениальному ученому-академику Николаю Боголюбову в честь столетия со дня его рождения.

В 1992 г. Национальной академией наук Украины была основана Премия НАН Украины имени Н. М. Боголюбова, которая вручается Отделением математики НАН Украины за выдающиеся научные работы в области математики и теоретической физики. В честь ученого была названа малая планета «22616 Боголюбов».

ВСПОМНИТЕ ГЛАВНОЕ

1. Что является графиком линейного уравнения с двумя переменными?

2. В любом случае графиком уравнения с двумя переменными является прямая; плоскость?

3. В каком случае график линейного уравнения с двумя переменными проходит через начало координат?

РЕШИТЕ ЗАДАЧИ

1078 . На каком из рисунков 73-74 изображен график линейного уравнения с двумя переменными? Ответ объясните.

1079 . При каких значений коэффициентов а, b и с прямая ах + bу + с =0.

1) проходит через начало координат;

2) параллельна оси абсцисс;

3) параллельна оси ординат;

4) совпадает с осью абсцисс;

5) совпадает с осью ординат?

1080 . Не выполняя построения, определите, принадлежит графику линейного уравнения с двумя переменными 6х - 2у + 1 = 0 точка:

1)А(-1;2,5); 2)В(0;3,5); 3) С(-2; 5,5); 4)D(1,5;5).

1081 . Не выполняя построения, определите, принадлежит графику линейного уравнения с двумя переменными 3х + 3у - 5 = 0 точка:

1) A (-1; ); 2) B (0; 1).

1082

1) 2х + у - 4 = 0, если х = 0; 3) 3х + 3у - 1 = 0, если х = 2;

2) 4х - 2y + 5 = 0, если х = 0; 4)-5х - у + 6 = 0, если х = 2.

1083 . Для данного линейного уравнения с двумя переменными найдите значение у, соответствующее заданному значению х:

1)3х - у + 2 = 0, если х = 0; 2) 6х - 5y - 7 = 0, если х = 2.

1084

1) 2х + у - 4 = 0; 4) -х + 2у + 8 = 0; 7) 5х - 10 = 0;

2) 6х - 2y + 12 = 0; 5)-х - 2у + 4 = 0; 8)-2у + 4 = 0;

3) 5х - 10y = 0; 6)х - у = 0; 9) х - у = 0.

1085 . Постройте график линейного уравнения с двумя переменными:

1) 4х + у - 3 = 0; 4) 10х - 5у - 1 = 0;

2) 9х - 3у + 12 = 0; 5) 2х + 6 = 0;

3)-4х - 8у = 0; 6) у - 3 = 0.

1086 . Найдите координаты точки пересечения графика линейного уравнения с двумя переменными 2х - 3у - 18 = 0 с осью:

1) оси; 2) оси.

1087 . Найдите координаты точки пересечения графика линейного уравнения с двумя переменными 5х + 4у - 20 = 0 с осью:

1) оси; 2) оси.

1088 . На прямой, которая является графиком уравнения 0,5 х + 2у - 4 = 0, обозначено точку. Найдите ординату этой точки, если ее абсцисса равна:

5) 4(х - у) = 4 - 4у;

6) 7х - 2у = 2(1 + 3,5 х).

1094 . График линейного уравнения с двумя переменными проходит через точку А(3; -2). Найдите неизвестный коэффициент уравнения:

1) ах + 3у - 3 = 0;

2) 2х - by + 8 = 0;

3)-х + 3у - с = 0.

1095 . Определите вид четырехугольника, вершинами которого являются точки пересечения графиков уравнений:

х - y + 4 = 0, х - у - 4 = 0, -х - у + 4 = 0, -х - у - 4 = 0

1096 . Постройте график уравнения:

1) а - 4b + 1 = 0; 3) 3a + 0 ∙ b - 12 = 0;

2) 0 ∙ а + 2b + 6 = 0; 4) 0 ∙ a + 0 ∙ b + 5 = 0.

ПРИМЕНИТЕ НА ПРАКТИКЕ

1097 . Составьте линейное уравнение с двумя переменными по следующим данным: 1) 3 кг конфет и 2 кг печенья стоят 120 грн; 2) 2 ручки дороже 5 карандашей на 20 грн. Постройте график составленного уравнения.

1098 . Постройте график уравнения к задаче о: 1) количество девушек и парней в вашем классе; 2) покупку тетрадей в линейку и в клеточку.

ЗАДАЧИ НА ПОВТОРЕНИЕ

1099. Турист прошел 12 км за час. За сколько часов турист преодолеет расстояние 20 км с такой же скоростью движения?

1100. Какой должна быть скорость поезда по новому расписанию, чтобы он мог проехать расстояние между двумя станциями за 2,5 ч, если согласно старого расписания, двигаясь со скоростью 100 км/ч он преодолевал ее за 3 ч?

    Нарисуйте числовую линию. Поскольку для изображения неравенства с одной переменной достаточно одной оси, нет необходимости рисовать прямоугольную систему координат. Вместо этого просто проведите прямую линию.

    Изобразите неравенство. Это довольно просто, так как имеется всего лишь одна координата. Предположим, необходимо изобразить неравенство x <1. Для начала следует найти на оси число 1.

    • Если неравенство задается знаком > или < (“больше” или “меньше”), обведите заданное число пустым кружком.
    • Если неравенство задается знаком ≥ {\displaystyle \geq } (“больше или равно”) или ≤ {\displaystyle \leq } (“меньше или равно”), закрасьте кружок вокруг точки.
  1. Проведите линию. Проведите линию из только что отмеченной точки на числовой оси. Если переменная больше данного числа, отложите линию вправо. Если переменная меньше, проведите линию влево. На конце линии поставьте стрелку, чтобы показать, что она не является конечным отрезком и продолжается дальше.

    Проверьте ответ. Подставьте вместо переменной x какое-либо число и отметьте его положение на числовой оси. Если это число лежит на проведенной вами линии, график верен.

График линейного неравенства

    Используйте формулу прямой линии. Подобная формула использовалась выше для обычных линейных уравнений, однако в данном случае вместо знака ‘=’ следует поставить знак неравенства. Это может быть один из следующих знаков: <, >, ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } .

    • Уравнение прямой линии имеет вид y=mx+b , где m соответствует наклону, а b - пересечению с осью y.
    • Знак неравенства означает, что данное выражение имеет множество решений.
  1. Изобразите неравенство. Найдите точку пересечения прямой с осью y и ее наклон, после чего отметьте соответствующие координаты. В качестве примера рассмотрим неравенство y >1/2x +1. В этом случае прямая будет пересекать ось y при x =1, а ее наклон составит ½, то есть при движении вправо на 2 единицы мы будем подниматься вверх на 1 единицу.

    Проведите линию. Перед этим посмотрите на знак неравенства. Если это < или >, следует провести пунктирную линию. Если в неравенстве стоит знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } , линия должна быть сплошной.

    Заштрихуйте график. Так как неравенство имеет множество решений, на графике следует показать все возможные решения. Это означает, что следует заштриховать область над линией или под ней.

График квадратного уравнения

    Посмотрите на формулу. В квадратном уравнении хотя бы одна переменная возводится в квадрат. Обычно квадратное уравнение записывается в следующем виде: y=ax 2 +bx+c .

    • При построении графика квадратного уравнения у вас получится парабола, то есть кривая в виде латинской буквы ‘U’.
    • Для построения параболы необходимо знать координаты хотя бы трех точек, в том числе вершины параболы (ее центральной точки).
  1. Определите a, b и c. Например, в уравнении y=x 2 +2x+1 a =1, b =2 и c =1. Каждый параметр представляет собой число, которое стоит перед переменной в соответствующей степени. Например, если перед x не стоит никакого числа, значит b =1, поскольку соответствующее слагаемое можно записать в виде 1x .

    Найдите вершину параболы. Чтобы найти среднюю точку параболы, используйте выражение -b /2a . Для нашего примера получаем -2/2(1), то есть -1.

    Составьте таблицу. Итак, мы знаем, что координата x вершины равна -1. Однако это лишь одна координата. Чтобы найти соответствующую ей координату y , а также две другие точки параболы, необходимо составить таблицу.

    Постройте таблицу из трех строк и двух столбцов.

    • Запишите координату x вершины параболы в центральной ячейке левого столбца.
    • Выберите еще две координаты x на одинаковом расстоянии слева и справа (в отрицательную и положительную стороны вдоль горизонтальной оси). Например, можно отступить от вершины на 2 единицы влево и вправо, то есть записать в соответствующих ячейках -3 и 1.
    • Можно выбрать любые целые числа, которые отстоят от вершины на равном расстоянии.
    • Если вы хотите построить более точный график, вместо трех можно взять пять точек. В этом случае следует делать то же самое, только таблица будет состоять не из трех, а из пяти строк.
  2. Используйте уравнение и таблицу, чтобы найти неизвестные координаты y . Берите по одной координате x из таблицы, подставляйте ее в заданное уравнение и находите соответствующую координату y.

    • В нашем случае мы подставляем в уравнение y =x 2 +2x +1 вместо x -3. В результате находим y = -3 2 +2(-3)+1, то есть y =4.
    • Записываем найденную координату y в ячейке возле соответствующей ей координаты x.
    • Найдите таким образом все три (или пять, если вы используете больше точек) координаты y .
  3. Нанесите на график точки. Итак, у вас получилось по крайней мере три точки с известными координатами, которые можно отметить на графике. Соедините их кривой в форме параболы. Готово!

График квадратного неравенства

    Постройте график параболы. В квадратном неравенстве используется формула, аналогичная квадратному уравнению, однако вместо знака ‘=’ стоит знак неравенства. Например, квадратное неравенство может выглядеть следующим образом: y x 2 +bx +c. Используйте шаги из предыдущего метода “График квадратного уравнения” и найдите три точки параболы.

Видеоурок «Уравнение с двумя переменными и его график» знакомит учеников с понятием уравнения с двумя переменными, его решением, дает представление о графике уравнения с двумя переменными, его построении. Задача видеоурока - наглядно представить учебный материал по данной теме, облегчая выполнение задач учителя на уроке и давая возможность ему более эффективно использовать время урока.

Возможности видеоурока больше, чем любого другого наглядного пособия. Возможность использовать анимационные эффекты, заменить учителя в демонстрации построения графиков, чертежей, выполнение голосового сопровождения позволяет повысить эффективность урока, более рационально распределять время, удерживать внимание учеников на изучаемом материале.

Видеоурок начинается с представления темы. Ученикам представляются примеры уравнений с двумя переменными: 3х+4у=16, х 2 =9-у 2 , ху-8=0. Далее дается представление о решениях уравнения с двумя переменными. Демонстрируется подстановка значений переменных х=4 и у=1, которые превращают уравнение 3х+4у=16 в справедливое равенство. После объяснения сути решения уравнения, вводится понятие решения уравнения, которое в данном случае представляет собой пару чисел (4;1), в котором на первом месте представлено значение переменной х, а на втором - значение переменной у. Далее для запоминания учениками на экран выведено определение, что такое решение уравнения, которым называется пара значений для переменных, обращающая уравнение в верное равенство.

Уточняется особенность уравнения, имеющего две переменные - в большинстве случаев они имеют бесконечное множество решений. Вводится понятие равносильных уравнений, представляющих собой уравнения, имеющие одинаковое множество решений. Отмечается одинаковый способ определения степени целого уравнения, имеющего две переменные, и целого уравнения, имеющего одну переменную. Также уточняется, что уравнение, содержащее две переменные, у которого в левой части - многочлен, а в правой - 0, имеет степень, равной степени данного многочлена. Способом определения степени уравнения остается замена его равносильным уравнением таким образом, чтобы в левой части уравнения остался многочлен стандартного вида, а в левой - нуль. Приведен пример такой замены: отмечается, что уравнения (х 2 -у) 2 =х 4 -1 и -2х 2 у+у 2 +1=0 равносильны. После приведения уравнения к виду, когда в левой части остается многочлен стандартного вида, можно установить, что данное уравнение - третьей степени.

Далее рассматриваются особенности графика уравнения, имеющего две переменные. В представленном определении графиком некоторого уравнения, имеющего две переменные, является множество точек на координатной плоскости, подставив координаты которых, можно получить верное равенство. Ученикам напоминается вид графиков, уже изученных ранее и представляющих собой график уравнения с двумя переменными. Это прямая, представляющая собой график линейного уравнения ax+by=c, где a≠0 и b≠0, а также парабола - график уравнения у=х 2 , гипербола - график ух=15.

Ученикам демонстрируется построение графика функции x 2 +y 2 =r 2 , где r - произвольное положительное число. Окружность, являющаяся графиком данного уравнения, представлена на экране. Доказывается, что любая точка окружности будет удовлетворять данному уравнению. Для этого отмечаем произвольную точку В(х;у). Длина опущенного на ось абсцисс перпендикуляра равна модулю ординаты данной точки, а отрезок, проведенный из данной точки в начало координат - радиусу. Длина отрезка от начала координат до точки пересечения перпендикуляра с осью абсцисс равна модулю абсциссы. Из полученного прямоугольного треугольника АОВ имеем равенство: АО 2 +АВ 2 =ВО 2 , то есть |x| 2 +|y| 2 =r 2 . Это равенство также справедливо без знака модуля.

Чтобы убедиться, что уравнение верно в любом положении В(х;у) на окружности, предлагается рассмотреть точку В, которая лежит в точке пересечения окружности с осью абсцисс. Отмечается, что в этом случае одна координата точкиу равняется радиусу, а вторая - нуль. Уравнение x 2 +y 2 =r 2 превращается в 0 2 +r 2 =r 2 , поэтому равенство также справедливо. При этом для всех точек, которые не лежат в области определения, их координаты не удовлетворяют уравнению окружности x 2 +y 2 =r 2 . Примеры таких точек отмечены на координатной плоскости. Общий вывод из рассмотренного построения следует, что уравнение окружности в записи х 2 +у 2 =r 2 верно для случаев, когда точки А(х;у) принадлежат области определения φ, О(0;0) - центр окружности, а r - радиус.

Далее рассматривается, как уравнение окружности зависит от положения ее центра. Отмечается, что при переносе центра на |а| единиц вправо или влево параллельно х, а также на |b| единиц вверх или вниз, параллельно у, получается окружность того же радиуса, только с центром в точке с новыми координатами О(a;b). Уравнением такой окружности будет (x-a) 2 +(y-b) 2 =r 2 .

Видеоурок «Уравнение с двумя переменными и его график» может быть использован как наглядное пособие на уроке алгебры по данной теме или заменить объяснение учителя по теме. Также данный материал может быть полезен при дистанционном обучении, поможет освоить тему ученикам самостоятельно.

§ 1 Отбор корней уравнения при реальных ситуациях

Рассмотрим такую реальную ситуацию:

Мастер и ученик вместе изготовили на заказ 400 деталей. Причём мастер работал 3 дня, а ученик 2 дня. Сколько деталей изготовил каждый?

Составим алгебраическую модель данной ситуации. Пусть мастер изготавливает за 1 деньхдеталей. А ученик у деталей. Тогда мастер за 3 дня изготовит 3х деталей, а ученик изготовит за 2 дня 2у деталей. Вместе они изготовят 3х + 2удеталей. Так как по условию всего изготовлено 400 деталей, то получим уравнение:

Полученное уравнение называют линейным уравнением с двумя переменными. Здесь нам надо найти пару чисел х и у, при которых уравнение примет вид верного числового равенства. Заметим, что если х= 90, у = 65, то получим равенство:

3 ∙ 90 + 65 ∙ 2 = 400

Так как получено верное числовое равенство, то пара чисел 90 и 65 будет являться решением этого уравнения. Но найденное решение не единственно. Если х = 96 и у = 56, то получаем равенство:

96 ∙ 3 + 56 ∙ 2 = 400

Это тоже верное числовое равенство, а, значит, пара чисел 96 и 56 так же является решением этого уравнения. А вот пара чисел х= 73и у= 23 не будет являться решением этого уравнения. В самом деле, 3 ∙ 73 + 2 ∙ 23 = 400 даст нам неверное числовое равенство 265 = 400.Необходимо отметить, что если рассматривать уравнение применительно к данной реальной ситуации, то будут существовать пары чисел, которые, являясь решением данного уравнения, не будут являться решением задачи. Например, пара чисел:

х = 200 и y = -100

является решением уравнения, но ученик не может сделать -100 деталей, а поэтому такая пара чисел ответом на вопрос задачи быть не может. Таким образом, в каждой конкретной реальной ситуации необходимо разумно подходить к отбору корней уравнения.

Подведём первые итоги:

Уравнение вида ах + bу + с = 0, где а, b, с - любые числа, называют линейным уравнением с двумя переменными.

Решением линейного уравнения с двумя переменными называют пару чисел соответствующих х и у, при которых уравнение обращается в верное числовое равенство.

§ 2 График линейного уравнения

Сама запись пары (х;у) наталкивает нас на мысль о возможности изображения её в виде точки с координатами хи у на плоскости. А значит, мы можем получить геометрическую модель конкретной ситуации. Например, рассмотрим уравнение:

2х + у - 4 = 0

Подберём несколько пар чисел, которые будут являться решениями этого уравнения и построим точки с найденными координатами. Пусть это будут точки:

А(0; 4), В(2; 0), С(1; 2), D(-2; 8), Е(- 1; 6).

Заметим, что все точки лежат на одной прямой. Такую прямую называют графиком линейного уравнения с двумя переменными. Она является графической (или геометрической) моделью данного уравнения.

Если пара чисел (х;у) является решением уравнения

ах + ву + с = 0, то точка М(х;у) принадлежит графику уравнения. Можно сказать и наоборот: если точка М(х;у) принадлежат графику уравнения ах + ву + с = 0, то пара чисел (х;у) является решением этого уравнения.

Из курса геометрии мы знаем:

Для построения прямой необходимо 2 точки, поэтому для построения графика линейного уравнения с двумя переменными достаточно знать всего 2 пары решений. Но угадывание корней процедура далеко не всегда удобная, не рациональная. Можно действовать и по другому правилу. Поскольку абсцисса точки (переменная х) это независимая переменная, то можно придать ей любое удобное значение. Подставив это число в уравнение, мы найдём значение переменной у.

Например, пусть дано уравнение:

Пусть х = 0, тогда получим 0 - у + 1 = 0 или у = 1. Значит, если х = 0, то у = 1. Пара чисел (0;1) - решение этого уравнения. Зададим для переменной х ещё одно значение х = 2. Тогда получим 2 - у + 1 = 0 или у = 3. Пара чисел (2;3) также является решением этого уравнения. По двум найденным точкам уже можно построить график уравнения х - у + 1 =0.

Можно поступить и так: сначала придать некоторое конкретное значение переменной у, а уж потом вычислить значение х.

§ 3 Система уравнений

Найдите два натуральных числа, сумма которых 11, а разность 1.

Для решения этой задачи сначала составим математическую модель (а именно алгебраическую). Пусть первое число х, а второе - у. Тогда сумма чисел х + у = 11 и разность чисел х - у = 1. Так как в обоих уравнениях речь идёт об одних и тех же числах, то данные условия должны выполниться одновременно. Обычно в таких случаях используют специальную запись. Уравнения записывают одно под другим и объединяют фигурной скобкой.

Такую запись называют системой уравнений.

Теперь построим множества решений каждого уравнения, т.е. графики каждого из уравнений. Возьмём первое уравнение:

Если х =4, то у = 7. Если х = 9, то у = 2.

Через точки (4;7) и (9;2) проведём прямую.

Возьмём второе уравнение х - у = 1. Если х = 5, то у = 4. Если х = 7, то у = 6. Через точки (5;4) и (7;6) так же проведём прямую. Получили геометрическую модель задачи. Интересующая нас пара чисел (х;у) должна являться решением обоих уравнений. На рисунке мы видим единственную точку, которая лежит на обеих прямых, это - точка пересечения прямых.

Её координаты (6;5). Поэтому решением задачи будет: первое искомое число 6, второе 5.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/ А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/ [А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010