Оптические явления в природе. Источники света — Гипермаркет знаний. Искусственные источники света: типы источников света и их основные характеристики, Особенности применения газоразрядных энергосберегающих источников света. Светильники: назначение, типы,

Нежилые помещения

Искусственные источники света — технические устройства различной конструкции, преобразовывающие энергию в световое излучение. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.).

Источники света, наиболее часто применяемые для искусственного освещения, делят на три группы - газоразрядные лампы, лампы накаливания и светодиоды. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.

В системах производственного освещения предпочтение отдается газоразрядным лампам. Использование ламп накаливания допускается в случае невозможности или экономической нецелесообразности применения газоразрядных.

Основные характеристики источников света:

· номинальное напряжение питающей сети U, B;

· электрическая мощность W, Вт;

· световой поток Ф, лм;

· световая отдача (отношение светового потока лампы к ее мощности) лм/Вт;

· срок службы t, ч;

· Цветовая температура Tc, К.

Лампа накаливания - источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника (вольфрамовой нити). Эти приборы предназначаются для бытового, местного и специального освещения. Последние, как правило, отличаются внешним видом - цветом и формой колбы. Коэффициент полезного действия (КПД) ламп накаливания составляет около 5-10%, такая доля потребляемой электроэнергии преобразуется в видимый свет, а основная ее часть превращается в тепло. Любые лампы накаливания состоят из одинаковых основных элементов. Но их размеры, форма и размещение могут сильно отличаться, поэтому различные конструкции не похожи друг на друга и имеют разные характеристики.

Существуют лампы, колбы которых наполнены криптоном или аргоном. Криптоновые обычно имеют форму "грибка". Они меньше по размеру, но обеспечивают больший (примерно на 10%) световой поток по сравнению с аргоновыми. Лампы с шаровой колбой предназначены для светильников, служащих декоративными элементами; с колбой в форме трубки - для подсветки зеркал в стенных шкафах, ванных комнатах и т. д. Лампы накаливания имеют световую отдачу от 7 до 17 лм/Вт и срок службы около 1000 часов. Они относятся к источникам света с теплой тональностью, поэтому создают погрешности при передаче сине-голубых, желтых и красных тонов. В интерьере, где требования к цветопередаче достаточно высоки, лучше использовать другие типы ламп. Также не рекомендуется применять лампы накаливания для освещения больших площадей и для создания освещенности, превышающей уровень 1000 Лк, так как при этом выделяется много тепла и помещение "перегревается".

Несмотря на эти ограничения, такие приборы все еще остаются классическим и излюбленным источникам света.

Лампы накаливания со временем теряют яркость, и происходит это по простой причине: испаряющийся с нити накаливания вольфрам осаждается в виде темного налета на внутренних стенках колбы. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов (йода или брома).

Лампы бывают двух форм: трубчатые - c длинной спиралью, расположенной по оси кварцевой трубки, и капсульные - с компактным телом накала.

Цоколи малогабаритных бытовых галогенных ламп могут быть резьбовыми (тип Е), которые подходят к обычным патронам, и штифтовые (тип G), которые требуют патронов другого типа.

Световая отдача галогенных ламп составляет 14-30 лм/Вт. Они относятся к источникам с теплой тональностью, но спектр их излучения ближе к спектру белого света, чем у ламп накаливания. Благодаря этому прекрасно "передаются" цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека.

Применяются повсюду. Лампы, имеющие цилиндрическую или свечеобразную колбу и рассчитанные на сетевое напряжение 220В, можно использовать вместо обычных ламп накаливания. Зеркальные лампы, рассчитанные на низкое напряжение, практически незаменимы при акцентированном освещении картин, а также жилых помещений.

— разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света. В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.

Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов.

Два основных разряда высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света — , отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, широкий диапазон цветовых температур от 3000 К до 20000К, средний срок службы около 15 000 часов. МГЛ успешно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются . На сегодняшний день это один самых экономичных источников света благодаря высокой светоотдаче (до 150 Лм/Вт), большому сроку службы и демократичной цене. Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.

Светодиод — это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии. Великолепные характеристики светодиодов (световая отдача до 120 Лм/Вт, цветопередача Ra=80-85, срок службы до 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике.

Светодиоды применяются в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах и в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях и прожекторах. Так же они применяются в качестве подсветки жидкокристаллических экранов. Последние поколения этих источников света можно встретить в архитектурном и интерьерном освещении, а так же в бытовом и коммерческом.

Преимущества:

· Высокий КПД.

· Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

· Длительный срок службы.

· Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

· Малый угол излучения — также может быть как достоинством, так и недостатком.

· Безопасность — не требуются высокие напряжения.

· Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

· Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

· Недостаток - высокая цена.

· Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания.

Пример источника света относящийся к первому классу. Лампа накаливания общего применения в прозрачной колбе
Пример источника света относящийся ко второму классу. Дуговая натриевая лампа в прозрачной колбе
Пример источника света относящийся к третьему классу. Лампа смешанного типа в колбе покрытой люминофором
Пример источника света относящийся к четвертому классу. Светодиодная лампа выполненная в форме лампы накаливания общего применения

Классификация источников света

Нет ни одной отрасли народного хозяйства, где бы ни использовалось искусственное освещение. Начало развития отрасли производства источников света было положено в 19 веке. Поводом для этого послужило изобретение дуговых ламп и ламп накаливания.

Тело, излучающее свет в результате преобразования энергии называется источником света. Почти все производимые в настоящее время типы источников света являются электрическими. Это значит, что для создания светового излучения в качестве первичной затрачиваемой энергии используют электрический ток. Источниками света считают приборы с излучением света не только в видимой части спектра (длинны волн 380 - 780 нм), но и ультрафиолетовой (10 - 380 нм) и инфракрасной (780 - 10 6 нм) областях спектра.

Различают следующие виды источников света: тепловые, люминесцентные и светодиодные.

Тепловые источники излучения являются самыми распространенными. Излучение в них появляется вследствие нагревания тела накала до темпер, при которых появляется не только тепловое излучение в инфракрасном спектре, но и наблюдается видимое излучение.

Люминесцентные источники излучения способны излучать свет не зависимо от того в каком состоянии находится их излучающее тело. Свечение в них возникает через преобразование различных видов энергии непосредственно в оптическое излучение.

На основании изложенных различий источники света делят на четыре класса.

Тепловые

Сюда относят всевозможные , включая галогенные, а также электрические инфракрасные нагреватели и угольные дуги.

Люминесцентные

К ним относят следующие виды электрических ламп: дуговые , различные лампы тлеющего разряда, низкого давления, лампы дугового, импульсного и высокочастотного разряда, в том числе и те, в которые добавлены пары металлов или на колбу которых нанесено люминофорное покрытие.

Смешанного излучения

Такие виды ламп освещения одновременно используются тепловое и люминесцентное излучение. Примером могут служить дуги высокой интенсивности.

Светодиодные

К светодиодным источникам света относят все типы ламп и световых приборов с использованием светоизлучающих диодов.

Кроме того, существуют другие признаки по которым производится классификация ламп (по области применения, конструктивно-технологическим признакам и тому подобные).

Основные параметры источников света

Световые, электрические и эксплуатационные свойства электрических источников света характеризуют рядом параметров. Сравнение параметров нескольких источников света, для их использования в той или иной области применения, позволяет остановиться на наиболее подходящем из них. Сопоставляя параметры отдельных экземпляров одного и того же источника света, обращая внимание на место и время изготовления, можно судить о качестве и технологическом уровне их производства.

Перечислим основные электрические характеристики ламп и в целом всех источников света:

Номинальное напряжение - напряжение, при котором лампа работает в наиболее экономичном режиме и на которое она рассчитывалась для ее нормальной эксплуатации. Для лампы накаливания номинальное напряжение равно напряжению питающей электрической сети. Обозначается такое напряжение U л.н и измеряется в вольтах. Газоразрядные лампы такого параметра не имеют, так как напряжение разрядного промежутка определяется характеристиками примененного для ее стабилизации пускорегулирующего аппарата (ПРА).

Номинальная мощность P л.н - расчетная величина характеризующая мощность потребляемую лампой накаливания при ее включении на номинальное напряжение. Для газоразрядных ламп, в цепь которых включают пускорегулирующие аппараты, номинальная мощность считается основным параметром. Основываясь на ее значении, путем экспериментов, определяются остальные электрические параметры ламп. Нужно учесть, что для определения мощности потребляемой из сети нужно сложить мощности лампы и пускорегулирующего аппарата.

Номинальный ток лампы I л.н - ток потребляемый лампой при номинальном напряжении и номинальной мощности.

Род тока - переменный или постоянный. Данный параметр нормируется только для газоразрядных ламп. Он влияет на другие параметры (кроме указанных ранее), которые изменяются с изменением рода тока, причем это относится к лампам, работающим только на постоянном или только на переменном токе.

Основными световыми параметрами источников света являются:

Световой поток , излучаемый лампой. Для измерения светового потока лампы накаливания ее включают на номинальное напряжение. У газоразрядных ламп измерение производят когда она работает на номинальной мощности. Световой поток обозначается буквой Ф (латинская фи). Единицей измерения светового потока является люмен (лм).

Сила света. Для некоторых видов вместо светового потока используются параметры средняя сферическая сила света или яркость тела накала. Для таких ламп они являются основными светотехническими параметрами. Используемые обозначения для силы света I v , I v Θ , для яркости - L , их единицы измерения - соответственно кандела (кд) и кандела на квадратный метр (кд/м 2).

Световая отдача лампы , это отношение светового потока лампы к ее мощности

Единица световой отдачи - единица измерения параметра люмен на ватт (Лм/Вт). С помощью этого параметра можно оценить эффективность применения источников света в осветительных установках. Однако в качестве характеристики облучательных ламп используют другой параметр - величину отдачи потока излучения.

Стабильность светового потока - процентное отношение величины снижения светового потока в конце срока службы лампы к первоначальному световому потоку.

К эксплуатационным параметрам источников света относят параметры, характеризующие эффективность источника в определенных эксплуатационных условиях:

Полный срок службы τ полн - продолжительность горения в часах источника света, включенного при номинальных условиях, до полного отказа (перегорание лампы накаливания, отказ в зажигании для большинства газоразрядных ламп).

Полезный срок службы τ п - продолжительность горения в часах источника света, включенного при номинальных условиях, до снижения светового потока до уровня, при котором дальнейшая его эксплуатация становится экономически невыгодной.

Средний срок службы τ - основной эксплуатационный параметр лампы. Он представляет собой среднеарифметическое полных сроков службы групп ламп (не менее десяти) при условии, что среднее значение светового потока ламп группы к моменту достижения среднего срока службы осталось в пределах полезного срока службы, то есть при заданной стабильности светового потока. Это параметр особенно важен для ламп накаливания, так как увеличение их световой отдачи при прочих равных условиях приводит к сокращению срока службы. Так как экспериментальное определение срока службы приводит к выходу из строя испытуемых ламп, этот параметр определяется на определенном числе ламп с заданной степенью вероятности, рассчитываемой по законам математической статистики.

Динамическая долговечность - параметр, характеризующий срок службы ламп накаливания в условиях вибрации и тряски. Лампы с требуемой динамической долговечностью должны выдерживать определенное число циклов испытаний в установленном диапазоне частот.

Для уточнения работоспособности ламп кроме понятия среднего срока службы используют понятие гарантийного срока службы, определяющего минимальное время горения всех ламп в партии. Этому понятию иногда придают коммерческий смысл, считая гарантийный срок службы временем, в течение которого должна гореть любая лампа.

Сравнительно ограниченная продолжительность горения источников света, особенно ламп накаливания, устанавливает требование к их взаимозаменяемости, что может быть осуществлено только при повторяемости параметров отдельных ламп.

Для обеспечения экономичности осветительной установки важны как начальный световой поток лампы, так и зависимость его спада от времени эксплуатации. С увеличением длительности эксплуатации осветительной установки снижается роль капитальных затрат в стоимости световой энергии. Отсюда следует, что осветительные установки с малым числом часов горения в год целесообразно выполнять, используя более дешевые лампы накаливания и, наоборот, в промышленных осветительных установках, где продолжительность горения составляет 3000 часов и более, рационально использовать более дорогие, чем лампы накаливания, газоразрядные источники света с высокой световой отдачей. Стоимость единицы световой энергии определяется также тарифом на электроэнергию. При низких тарифах оправдано применение в осветительных установках ламп с относительно низкой световой отдачей и повышенным сроком службы.

Для искусственного освещения применяются различные источники света. По роду питающей их энергии различают электрические и неэлектрические источники света, по способу получения излучения — температурные и люминесцентные. Электрические источники света завоевали всеобщее признание. Преимущества электрических источников света перед неэлектрическими заключаются прежде всего в том, что они гораздо гигиеничнее последних, имеют несравненно большую световую отдачу (силу света и яркость), а также надежны в эксплуатации и обеспечивают возможность устройства гигиенически рационального освещения.

Электрические источники света по виду излучения подразделяются на три группы: а) лампы накаливания; б) газоразрядные лампы; в) смешанные источники света, совмещающие различные виды излучения (так, например, лампа солнечного света и др.).

В современных, наиболее совершенных лампах накаливания для повышения их экономичности применяется биспиральная нить накаливания, а колбы наполняют смесью малотеплопроводных газов — криптоном и ксеноном. С целью уменьшения яркости нити накаливания и приближения спектра излучения к дневному в первом случае изготовляют лампы с колбами либо из матового и молочного стекла, либо с колбами из светло-голубого стекла. Такие лампы имеют ряд гигиенических преимуществ по сравнению с лампами, имеющими колбы из прозрачного бесцветного стекла.

В газоразрядных лампах используют излучение газов или паров металла, возникающее под действием проходящего через них электрического тока. Для общего освещения линейный спектр большинства газоразрядных ламп является недостатком, так как при таком освещении происходит искажение цвета предметов. Применение люминофоров в сочетании с газовым разрядом позволило создать источники света, дающие излучение с почти непрерывным спектром любого состава, обладающие при этом высокой световой отдачей. Особенно широкое распространение получили осветительные люминесцентные лампы, дающие свет, близкий к белому, или дневному.

Люминесцентные лампы представляют собой цилиндрические стеклянные трубки, вн утренняя поверхность которых покрыта тонким равномерным слоем люминофора. В оба конца трубки впаяны электроды. В лампу вводят капельку ртути и инертный газ при давлении в несколько миллиметров ртутного столба.

Таким образом, современные люминесцентные лампы представляют собой газоразрядные ртутные лампы низкого давления, в которых ультрафиолетовое излучение, возникающее при прохождении электрического тока через пары ртути, превращается при помощи светосоставов (люминофоров), нанесенных на внутреннюю поверхность колбы, в видимое излучение. Применяя различные люминофоры или их смеси, получают лампы с излучением любого спектрального состава.

В настоящее время выпускают четыре основных типа ламп, отличающихся по цвету излучения:

  1. лампы дневного света (ДС);
  2. лампы холодно-белого света (ХБС);
  3. лампы белого света (БС);
  4. лампы тепло-белого света (ТБС).

На рис. 124 даны спектральные характеристики этих типов ламп.

Рис. 124. Спектральные характеристики люминесцентных ламп типа ДС, ХБС, БС, ТБС.

В люминесцентных лампах в среднем 20% потребляемой энергии превращается в видимое излучение. Это в 2-2,5 раза больше, чем в лампах накаливания. Световая отдача люминесцентных ламп дневного света составляет от 33 до 42,5 лм/вт, а люминесцентных ламп белого света она еще выше — до 52,5 лм/вт, т. е. в 3-3,5 раза выше, чем в лампах накаливания. Характерным для всех упомянутых выше ламп является недостаточное излучение в красной части спектра.

Яркость трубки люминесцентных ламп, дающих свет, близкий к белому или дневному, составляет от 3000 до 9000 нт. Особенностью люминесцентных ламп является возможность получения спектра излучения, близкого к спектру дневного света. Это новое качество важно в гигиеническом отношении. Не меньшее гигиеническое значение имеет еще и то, что яркость трубки в люминесцентных лампах во много раз меньше, чем яркость нити накала электрических ламп накаливания. Кроме того, при освещении люминесцентными лампами получается почти полное отсутствие теней и бликов на освещаемой поверхности, т. е. те качественные преимущества, которые нельзя достичь без применения специальных арматур от ламп накаливания.

Люминесцентные лампы не лишены недостатков. Существенный недостаток люминесцентных ламп, питаемых переменным током, состоит в периодичности колебаний светового потока до 100 раз в секунду.

Смешанные источники излучения совмещают оба вида излучения.

К ним относятся дуговые лампы, лампы солнечного света и др. Все эти источники также содержат ультрафиолетовые лучи. Большого внимания с гигиенической точки зрения заслуживает лампа искусственного солнечного света.

В настоящее время нашей промышленностью разработаны источники света, дающие одновременно видимое и эритемное излучение и не требующие для своего включения пусковых приспособлений — ртутно-вольфрамовые лампы (РВЭ-350).

Светильники

Светильники — приборы, которые состоят из источника света и осветительной арматуры. Для освещения должны применяться светильники, а не источники света — лампы.

В осветительных установках создание заданной величины освещенности и требуемого распределения яркости в поле зрения невозможно без осветительной арматуры, главной задачей которой является перераспределение светового потока и ослабление блеского действия источника света. Она бывает отражающей, преломляющей и рассеивающей. По принятой в СССР светотехнической классификации светильники общего освещения делились на три класса: П — прямого света, О — отраженного света и Р — рассеянного света.

Схематически действие светильников различных классов, применяемых для общего освещения, показано на рис. 125.

Рис. 125. Особенности распределения светового потока при употреблении светильников различных классов.

При освещении помещения светильниками прямого света потолок и верхняя часть стен остаются затененными или в крайнем случае слабо освещенными. Особенностью применения светильников прямого света являются жесткие тени.

Светильники прямого света применяются для освещения высоких цехов, подсобных помещений и санитарных узлов. Освещение светильниками прямого света наименее благоприятно в отношении гигиены зрения. Оно создает большую неравномерность освещения и резкие тени.

Светильники рассеянного света характеризуются тем, что световой поток ими распределяется в верхнюю и нижнюю полусферы так, что в одну из них излучается более 10%, а в другую — менее 90%. Тени в этом случае становятся более мягкими. Такие светильники могут быть рекомендованы для освещения общественных зданий.

Светильники отраженного света характеризуются тем, что весь световой поток направляется ими кверху. Освещение отраженным светом рекомендуется для парадных комнат, конференц-залов, актовых залов и т. п. Отраженное освещение, создавая равномерность освещения, отсутствие теней и слепящих бликов, наиболее благоприятно для зрения.

В светильниках с люминесцентными лампами применяются в качестве затенителя решетки, создающие необходимый защитный угол в плоскости оси лампы. Защитным углом светильника называется угол, образуемый горизонталью, проходящей через тело накала лампы, и линией, соединяющей наиболее удаленную точку тела накала с противолежащей по отношению к ней точкой края отражателя (рис. 126).

Рис. 126. Иллюстрация защитного угла светильника.

Санитарно-гигиеническую оценку светильников производят, исходя из того, насколько они:

  1. обеспечивают требуемую освещенность и равномерность ее на освещаемой поверхности;
  2. защищают глаза от блескости;
  3. дают нужное перераспределение светового потока;
  4. обеспечивают возможность в нужных случаях изменить спектр источника света.

Защита глаз от блескости (ограничение ослепленности) достигается созданием достаточного защитного угла светильника, увеличением высоты подвеса светильника, применением для экранирования источника света рассвивающих свет материалов, а также применением ламп с колбами из матового стекла. Блескость светильника определяется его силой света и яркостью.

Требования, предъявляемые к качественным и количественным характеристикам искусственного освещения, определяются многими условиями; они различны в зависимости от назначения помещений, характера зрительной работы и возраста обитателей этих помещений. Искусственное освещение закрытых помещений осуществляется либо системой одного общего освещения, либо системой комбинированного освещения, общим и местным одновременно.

При высоте комнат 2,7-3 м наивыгоднейшая высота подвеса светильников близка к строительной высоте. Такая же высота подвеса светильников, а именно 2,8 м от пола, регламентируется правилами ограничения ослепленности.

Задача выбора рационального варианта размещения светильников сводится к определению расстояния между светильниками, при котором обеспечивается наибольшая равномерность освещения.;

В настоящее время промышленностью выпускаются специальные типы светильников для промышленных и общественных зданий (лечебных учреждений, школ и т. п.).

Лечебные учреждения

Для лечебных учреждений (больницы, поликлиники и т. п.) рекомендуются в основном светильники двух типов.

1. В палатах больниц для общего освещения желательно применение светильников полностью отраженного света, устанавливаемых в центральной части потолка, и светильников местного освещения, устанавливаемых у изголовья кроватей больных.

Рекомендуемый тип светильников общего освещения — ПФ-ОО. Светильник рассчитан для работы с двумя лампами накаливания 60 вт каждая и имеет рассеиватель из молочного накладного стекла. Отражатель светильника снаружи и изнутри окрашен белой эмалевой краской. Светильники ПФ-00 выпускаются Рижским светотехническим заводом (рис. 127).

Рис. 127. Светильник ПФ-ОО.

2. В кабинетах врачей и других помещениях поликлиник и больниц (лаборатории, помещения для приготовления лекарств, процедурные кабинеты и т. п.) целесообразно применять кольцевые светильники типа СК-300, КСО-1, ПМ-1, С-178 и потолочные кольцевые светильники.

Рис. 128. а — кольцевой светильник типа СК-300; б — кольцевой светильник типа КСО-1.

СК-300 (рис. 128, а) — подвесной кольцевой светильник, преимущественно отраженного светораспределения. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет пять металлических экранирующих колец; нижнее кольцо перекрыто силикатным молочным стеклом, окрашен белой эмалевой краской. Светильник выпускается заводом «Электросвет» имени П. Н. Яблочкова (Москва).

КСО-1 (рис. 128, б) — подвесной кольцевой светильник отраженного света. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет два экранирующих кольца и чашу, закрывающую снизу лампу. Экранирующие кольца и чаша покрыты белой силикатной эмалью. Светильник выпускается Луганским заводом электромонтажных изделий № 6.

Рис. 129. а — подвесной кольцевой светильник рассеянного света типа ПМ-1; б — потолочный кольцевой светильник рассеянного света С-178.

ПМ-1 (рис. 129, а) — подвесной кольцевой светильник рассеянного света. Светильник рассчитан для работы с лампой накаливания 300 вт и имеет четыре экранирующих кольца, скрепленных четырьмя кронштейнами, окрашен белой эмалевой краской. Выпускается Рижским светотехническим заводом.

С-178 (рис. 129, а) — потолочный кольцевой светильник рассеянного света. Светильник рассчитан для работы с лампами накаливания 75 и 100 вт и имеет три экранирующих кольца, скрепленных между собой; окрашен белой эмалевой краской. Светильник выпускается Казанским заводом электромонтажных изделий.

Рис. 130. Потолочный кольцевой светильник.

Потолочный кольцевой светильник (рис. 130) рассчитан для работы с лампой накаливания 150 вт и имеет отражатель и экранирующую решетку из пяти концентрических колец, скрепленных между собой тремя ребрами, которая крепится к отражателю на трех крючках. Внутренняя поверхность отражателя и экранирующая решетка окрашены белой эмалевой краской. Светильник выпускается 5-м Механическим заводом (Москва).

Школьные здания

Для освещения школьных классов лампами накаливания рекомендуются кольцевые светильники типа СК-300 и КСО-1. Из светильников с люминесцентными лампами для освещения школьных классов применяются светильники серии ШОД. Это — подвесные светильники рассеянного света, рассчитанные на две люминесцентные лампы по 40 или 80 вт каждая. Светильник имеет экранирующую решетку, состоящую из одной продольной и ряда поперечных планок. Сбоку вдоль светильника в пазах решетки установлены плоские рассеиватели из опалового стекла. Корпус светильника и экранирующая решетка окрашены белой диффузной краской. Светильники выпускаются Рижским светотехническим заводом, а также начато их производство на заводах Пермского и Мордовского совнархозов (рис. 131).

Рис. 131. Светильник с люминесцентными лампами для освещения школьных классов.

Промышленные предприятия

1. Для помещений с нормальными пыльностью и влажностью применяются светильники типа «Универсаль», рассчитанные для работы с лампами накаливания 150, 200 и 500 вт. Светильники выпускаются заводами Тульского совнархоза, Луганским заводом электромонтажных изделий и артелью «Электротехник» (Ленинград).

Светильники типа «Глубокоизлучатель» рассчитаны для работы с лампами накаливания 1000 и 500 вт. Эти светильники выпускаются Луганским заводом электромонтажных изделий.

В настоящее время все чаще начинают применяться для освещения производственных помещений светильники с люминесцентными лампами.

Рис. 132. Светильник с люминесцентными лампами для промышленных предприятий.

Для помещений с нормальными пыльностью и влажностью рекомендуются светильники серии ОД и ОДЛ; светильники серии ОД (рис. 132) в двух вариантах: со сплошным отражателем (шифр ОД) и с отражателем, в верхней части которого сделаны отверстия (шифр ОДО). Последний 15% светового потока направляет вверх. Светильники выпускаются на две и четыре люминесцентные лампы, 30 или 40 вт каждая. Светильники выпускаются заводами Латвийского, Татарского и Пермского совнархозов (с лампами по 30 вт) и заводами Латвийского, Ростовского и Кемеровского совнархозов (с лампами по 40 вт).

Светильники серии ОДЛ выпускаются заводом ламп дневного света Управления металлообрабатывающей промышленности (Москва). Светильники выпускаются на две или три люминесцентные лампы, 15 и 30 вт каждая. Светильники обеих серий, ОД и ОДЛ, выпускаются как с экранирующей решеткой, так и без нее.

2. Для производственных помещений с повышенными влажностью, содержанием пыли и химически активной средой рекомендуются светильники в пылезащитном исполнении и уплотненные светильники. Это — светильники типа «Универсалы» в пылезащитном исполнении и светильники типа СХ — изделия завода «Электросвет» имени П. Н. Яблочкова (Москва).

Из светильников с люминесцентными лампами рекомендуются светильники серии ТН (в частности, для освещения производственных помещений типографии). Светильники выпускаются на две и три люминесцентные лампы, 30 и 40 вт каждая. Светильники выпускаются Ленинградским литейно-механическим заводом, Металлообрабатывающим заводом Владимирского совнархоза (ст. Денисово) и Механическим заводом в Костроме.

Нас всегда и везде окружает свет, так как это неотъемлемая часть жизни. Огонь, солнце, луна или настольная лампа - это все относится к данной категории. Сейчас нашей задачей будет рассмотреть естественные и искусственные источники света.

Раньше у людей не было хитроумных будильников и сотовых телефонов, которые помогают нам встать тогда, когда это необходимо. Эту функцию выполняло Солнце. Оно встало - люди начинают работу, село - ложатся отдыхать. Но, со временем, мы научились добывать искусственные источники света, мы поговорим о них в статье более подробно. Начать необходимо с самого главного понятия.

Свет

В общем смысле - это волна (электромагнитная) которая воспринимается органами зрения человека. Но все же есть рамки, которые человек видит (от 380 до 780 нм). До этого идет Хоть мы его не видим, но наша кожа его воспринимает (загар), после этих рамок идет инфракрасное излучение, некоторые живые организмы его видят, а человеком он воспринимается как тепло.

Теперь разберем такой вопрос: почему свет бывает разного цвета? Все зависит от длины волны, например, фиолетовый цвет образуется пучком волн длины 380 нм, зеленый - 500 нм, а красный - 625. Вообще, основных цветов 7, которые мы можем наблюдать во время такого явления, как радуга. Но многие, особенно искусственные источники света, излучают волны белого цвета. Даже если взять лампочку, которая висит у вас в комнате, с вероятностью 90 процентов, она освещает именно белым светом. Так вот, он получается за счет смешения всех основных цветов:

  • Красного.
  • Оранжевого.
  • Желтого.
  • Зеленого.
  • Голубого.
  • Синий.
  • Фиолетовый.

Их очень легко запомнить, многие используют такие строки: каждый охотник желает знать, где сидит фазан. А первые буквы каждого слова и обозначают цвет, кстати, в радуге они располагаются точно в таком порядке. После того как мы разобрались с самим понятием, предлагаем перейти к вопросу " и искусственные". Мы подробно разберем каждый вид.

Источники света

Не существует и в наше время ни одной отрасли хозяйства, которая в своем производстве не использовала бы искусственные источники света. Когда же человек впервые занялся производством Это было в далеком девятнадцатом веке, а причиной развития отрасли служило изобретение ламп дуговых и накаливания.

Источники света естественные и искусственные - это тела, которые способны излучать свет, а точнее, преобразовывать одну энергию в другую. Например, электрический ток в электромагнитную волну. Действующим по этому принципу искусственным источником света является электрическая лампочка, которая так распространена в повседневной жизни.

Мы говорили в прошлом разделе о том, что не весь свет воспринимается нашими органами зрения, но тем не менее источником света является и тот объект, который излучает волны, невидимые нашему глазу.

Классификация

Начнем с того, что все они делятся на два больших класса:

  • Искусственные источники света (светильники, горелки, свечи и так далее).
  • Естественные (свет Солнца, Луны, сияние звезд и прочее).

При этом каждый класс, в свою очередь, делится на группы и подгруппы. Начнем с первых, искусственные источники различают:

  • Тепловые.
  • Люминесцентные.
  • Светодиодные.

Более подробную классификацию обязательно рассмотрим далее. Во второй класс входят следующие:

  • Солнце.
  • Межзвездный газ и сами звезды.
  • Атмосферные разряды.
  • Биолюминесценция.

Естественные источники света

Все объекты, излучающие свет природного происхождения являются натуральными источниками. При этом испускание света может являться как основным, так и вторичным свойством. Если сравнивать природные и искусственные источники света, примеры которых мы уже рассмотрели, то их основное отличие заключается в том, что вторые излучают видимый нашему глазу свет благодаря человеку, а точнее, производству.

В первую очередь, что приходит на ум каждому, природным источником является Солнце, являющееся источником света и тепла для всей нашей планеты. Также естественными источниками являются звезды и кометы, электрические разряды (например, молния во время грозы), свечение живых организмов, этот процесс также называют биолюминесценцией (примером являются светлячки, некоторые водные организмы, обитающие на дне и так далее). Природные источники света играют очень важную роль как для человека, так и для других живых организмов.

Виды искусственных источников света

Зачем же нам они нужны? Представьте, как изменится наша жизнь без всем привычных ламп, ночников и тому подобных приборов. В чем заключается назначение искусственного света? В создании благоприятной обстановки и условий видимости для человека, тем самым поддержание здоровья и хорошего самочувствия, уменьшение утомляемости органов зрения.

Искусственные источники света можно разделить на две, довольно обширные, группы:

  • Общие.
  • Комбинированные.

К примеру, о первой группе, все производственные участки всегда освещаются однотипными лампами, которые расположены на одинаковом расстоянии друг от друга и мощность ламп одинакова. Если говорить о второй группе, то тогда к вышеперечисленным добавляются еще несколько светильников, которые сильнее выделяют какую-либо рабочую поверхность, например, стол или станок. Эти дополнительные источники называются местным освещением. При этом, если использовать только местное освещение, то это будет сильно влиять на утомляемость, а следствием будет снижение работоспособности, кроме этого, возможны аварии и несчастные случаи на производстве.

Рабочее, дежурное и аварийное освещение

Если рассматривать классификацию искусственных источников с точки зрения функционального назначения, то можно выделить следующие группы:

  • Рабочее;
  • Дежурное;
  • Аварийное.

Теперь немного подробнее о каждом виде. Рабочее освещение есть везде, где это необходимо для поддержания работоспособности людей или для освещения пути для идущего транспорта. Второй класс освещения начинает функционировать после рабочего времени. Последняя группа нужна для поддержания работы производства в случае отключения основного (рабочего) источника света, оно минимально, но способно временно заменить рабочее освещение.

Лампа накаливания

В наше время для освещения производственных участков используют лампы накаливания следующих видов:

  • Галогенные.
  • Газоразрядные.

И что же все-таки такое лампа накаливания? Первое, на что стоит обратить свое внимание, - то, что она является электрическим источником, а свет мы видим благодаря раскаленному телу, называемому телом накала. Ранее (в девятнадцатом веке) тело накала изготавливалось из такого вещества, как вольфрам, или из сплава на его основе. Сейчас же его изготавливают из более доступного углеродного волокна.

Типы, преимущества и недостатки

Сейчас промышленные предприятия выпускают большое число разнообразных ламп накаливания, среди которых наиболее популярны:

  • Вакуумные.
  • Лампы с криптоновым наполнением.
  • Биспиральные.
  • Наполненные смесью газов аргона и азота.

Теперь разберем последний вопрос, который касается а именно преимущества и недостатки. Плюсы: они недорогие в производстве, имеют небольшой размер, если их включить, то не нужно ждать пока разгорится, в производстве ламп накаливания не используется токсичные компоненты, они работают как на постоянном, так и на переменном токе, возможно использование регулятора яркости, хорошая бесперебойная работа даже при очень низких температурах. Несмотря на такое большое количество преимуществ, есть все-таки и минусы: они не сильно ярко светят, свет имеет желтоватый отлив, сильно нагреваются во время работы, что ведет иногда к пожарам при соприкосновении с текстильным материалом.

Газоразрядная лампа

Все они делятся на лампы высокого и низкого давления, большинство из них работает на парах ртути. Именно они вытеснили лампы накаливания, к которым мы так сильно привыкли, но имеют просто массы минусов, один из которых уже нами сказан, а именно возможность отравится ртутью, также сюда можем отнести шумы, мерцание, что ведет к более быстрой утомляемости, линейный спектр излучения и так далее.

Такие лампы могут нам служить до двадцати тысяч часов, конечно, если колба цела, а свет, излучаемый ей, имеет либо теплый, либо нейтрально белый цвет.

Использование искусственных источников света довольно распространено, например, газоразрядные лампы очень часто и по сей день используются в магазинах или офисах, в декоративном или художественном освещении, кстати сказать, профессиональное световое оборудование, также не обошлось без газоразрядной лампы.

Сейчас производство газоразрядных ламп очень распространено, что и влечет за собой большое количество видов, один из самых популярных мы рассмотрим прямо сейчас.

Люминесцентная лампа

Как уже говорилось это один из видов газоразрядной лампы. Стоит отметить то, что их часто используют для основного источника света, люминесцентные лампы намного мощнее ламп накаливания и при этом они потребляют одинаково энергии. Раз мы уже начали сравнение с лампами накаливания, то будет уместным и следующий факт - срок службы люминесцентных может превышать в двадцать раз срок ламп накаливания.

Что касается их разновидностей, то чаще используют напоминающую трубку, а внутри и находятся пары ртути. Это очень экономичный источник света, который распространен в общественных заведениях (школах, больницах, офисах и так далее).

Источники света естественные и искусственные, примеры которых мы рассмотрели, просто необходимы для человека и других живых существ нашей планеты. Естественные источники не дают нам потеряться во времени, а искусственные заботятся о нашем здоровье и благополучии на предприятиях, уменьшая процент аварий и несчастных случаев.

Существуют природные, или естественные, источники света. Это Солнце, звезды, атмосферные электрические разряды (например, молния). Луну также причисляют к источникам света, хотя правильнее было бы отнести ее к отражателям света, так как она сама свет не излучает, а лишь отражает падающие на нее солнечные лучи. Естественные источники света существуют в природе независимо от человека.

Но есть множество источников света, создаваемых человеком. Это тела, вещества и устройства, в которых энергия любого вида при определенных, зависящих от человека условиях преобразуется в свет. Простейшие и древнейшие из них - костер, факел, лучина. В древнем мире (Египте, Риме, Греции) в качестве светильников использовали сосуды, наполненные животным жиром. В сосуд опускали фитиль (кусок веревки или скрученную в жгут тряпицу), который пропитывался жиром и горел довольно ярко.

В дальнейшем, вплоть до конца XIX в., основными источниками света служили свечи, масляные и керосиновые лампы, газовые фонари. Многие из них (например, свечи и керосиновые лампы) дожили до наших дней. Все эти источники света основаны на сжигании горючих веществ, поэтому их еще называют тепловыми. В таких источниках свет излучают мельчайшие раскаленные твердые частицы углерода. Их световая отдача очень мала - всего около 1 лм/Вт (теоретический предел для источника белого света около 250 лм/Вт).

Величайшим изобретением в области освещения было создание в 1872 г. русским ученым А. Н. Лодыгиным электрической лампы накаливания. Лампа Лодыгина представляла собой стеклянный сосуд с помещенным внутрь его угольным стержнем; воздух из сосуда откачивался. При пропускании по стержню электрического тока стержень разогревался и начинал светиться. В 1873-1874 гг. А. Н. Лодыгин проводил опыты по электрическому освещению кораблей, предприятий, улиц, домов. В 1879 г. американский изобретатель Т. А. Эдисон создал удобную для промышленного изготовления лампу накаливания с угольной нитью. С 1909 г. стали применять лампы накаливания с зигзагообразно расположенной вольфрамовой проволочкой (нить накаливания), а спустя 3-4 года вольфрамовую нить начали изготовлять в виде спирали. Тогда же появились первые лампы накаливания, наполненные инертным газом (аргоном, криптоном), что заметно повысило срок их службы. С начала XX в. электрические лампы накаливания благодаря экономичности и удобству в эксплуатации начинают быстро и повсеместно вытеснять другие источники света, основанные на сжигании горючих веществ. В настоящее время лампы накаливания стали наиболее массовыми источниками света.

Все многочисленные разновидности ламп накаливания (более 2000) состоят из одинаковых частей, различающихся размерами и формой. Устройство типичной лампы накаливания показано на рисунке. Внутри стеклянной колбы, из которой откачан воздух, на стеклянном или керамическом штенгеле при помощи держателей из молибденовой проволоки закреплена спираль из вольфрамовой проволоки (тело накала).